	Math 152) I		
Show Your Work!	February 17, 2009	Name		
Good Luck!	TEST #2 A		(please print)	

1. (a) Represent the LENGTH of the curve $f(x) = x + \cos(x)$ for $0 \le x \le 3$ as a definite integral.

length =
$$\int$$

(6)

(b) Represent the LENGTH of the curve x(t) = 1+3t y(t) = sin(2t) for 0≤x≤π as a definite integral.
 (Do NOT evaluate it.)

length =
$$\int$$

(6)

 A solid region is formed when the he shaded area in Fig. 1 is revolved around the x-axis. Represent the volume as a definite integral. (Do NOT evaluate it.)

volume =
$$\int dx$$

(7)

3. Represent the **volume** of the solid in Fig. 2 as a definite integral. The slices are circles. (**Do NOT evaluate it.**) volume = $\int dx$

(7	1
		1

4. You are at the top of a H=29 foot tall building (Fig. 4), and are lifting a W=300 pound sofa from the ground to a balcony that is B=20 feet above the ground using a chain that weighs C=3 pounds per foot. How much work do you do?

(a) work =
$$\int dx$$

(b) Use antiderivatives to evaluate the integral in part (a). Work = _____

(3)

5. The tank in Fig. 5 has width W=4 feet, height H=6 feet and length L=7 feet.is 5 feet. It is filled with a material that weighs 40 pounds per cubic foot. How much work is done to pump the top 2 feet of material over the top of a 12 foot tall wall?
(Do NOT evaluate it.)

Work =
$$\int$$

(7)

6. A spring has a natural length of 10 inches (rest length), and a 2 pound weight stretches it to a length of 13 inches. Calculate the work done to stretch the spring from a length of 11 inches to a length of 15 inches. (Show your work.) Work = ______

(7)

7.. A strange object is made of three uniformly dense rectangles (Fig. 7).Determine the coordinates of the center of mass of the object.

 \overline{x} = _____ \overline{y} = _____

(4)(4)

8. A region is bounded by the curve $y = 4 - x^2$, the x-axis, and the vertical lines x = 0and x = 2. Determine $\overline{x} =$ _____ (Do not calculate \overline{y}) (7)

9. The units of x are cats, the units of f(x) are dollars per cat, and the units of g(x) are pounds. Then the units of

(a)
$$\int g(x) dx$$
 are _____(2) (b) $\int \frac{f(x)}{g(x)} dx$ are _____(2)
(c) $\int f^2(x) dx$ are _____(2)

10. (a)
$$\int \frac{\cos(2x)}{\sin(2x)} dx =$$
 (b) $\int \frac{x}{\sqrt{3+x^2}} dx =$

(4)(4)

11. Something NEW (but not hard.): A 10 foot long piece of flexible chain is in a pile on the ground (Fig. 11). How much work is done start to lift one end of the chain so the top end is 10 feet above the Œ ground (and the bottom end is just touching the ground? pile of chain Fig. 11 The chain weighs 4 pounds per foot.

=

Work =
$$\int$$

12. Determine the volume when the region bounded by the curve $f(x) = \frac{1}{1+x^2}$, the lines x=0, x=2 and the x-axis is rotated around the y-axis. (Hint: one method is much easier than the other. Be smart/efficient.) Evaluate using antiderivatives and show your work.

(a) volume =
$$\int$$
 = _____

(6)(3)

(b) The volume when the same region is rotated around the line x = 3 is: (Do NOT evaluate it.)

volume = \int

(3)

(c) If the units of x are cm and the units of f(x) are (L/min)/cm² then the units of the integral in part (a) are ______

(2)

13. Biographies (1 each)

- (a) Teaches at UC Berkley, loves "understanding" and "visual" math:
- (b) Studied soap bubbles, loves rock climbing:
- (c) What does it mean if your Erdos Number is 1?

The end!