Show Your Work!
Good Luck!

Math 152

November 25, 2008
TEST \#3 A
Name \qquad

1. Carefully plot small slopes for the differential equation $\frac{d y}{d x}=y^{\prime}=x-2 y$ at the four points $(1,1),(2,1),(1,0)$ and $(2,2)$.
(4)

2. The figure shows the direction field for a differential equation. Sketch the solutions of the DE that go through the points $(-2,1),(2,0)$ and $(0,-1)$ (answer is three curves)
(9)
3. Solve $\frac{d y}{d x}=6 x^{2}+8 e^{2 x}-3 \quad y(0)=10$.

$$
y=
$$

\qquad
(5)
4. Solve $\frac{d y}{d x}=\frac{6 x+\cos (3 x)}{4 y} \quad y(0)=7$.
$y=$ \qquad
(5)
5. Solve for $\mathrm{T}: \quad 5.63=2.41 e^{1.23 T}$
$T=$ \qquad (4 decimal places)
(3)
6. Solve: $\frac{d y}{d x}=5.4 y \quad y(0)=3.2$
$y=$ \qquad
(4)
7. Solve $\frac{d y}{d x}=3 y-5 \quad y(0)=4$ $y=$ \qquad
(5)
8. We have 250 grams of radioactive material M which has a half-life of 800 years.
(Show all decimals to 4 decimal places)
(a) Find he formula for $\mathrm{M}(\mathrm{t})=$ the amount of the material after t years: $\mathrm{M}(\mathrm{t})=$ \qquad
(5)
(b) When will $\mathrm{M}(\mathrm{t})$ be 10% of the original amount. \qquad
(3)
9. $\frac{d y}{d t}=-2(y-2)(y-8)^{2}$
(a) What are the constant solutions?
(3)
(b) Sketch the constant solutions and the solutions that go through the points $(0,2)$ and $(2,10)$.

10. If a population of bacteria has a doubling time of 23 hours, how long will it take the population to triple? \qquad
(5)
11. Calculate these derivatives. Circle your answers.
(a) $\frac{d}{d x} \arcsin (5 x)=$
(5)
(b) $D(\arctan (3 x+1))=$
(5)
(c) $\frac{d}{d t} \ln (\operatorname{arcsec}(5 x))=$
(5)
(d) $D\left(e^{3 x} \cdot \arctan (7 x)\right)=$
(5)
12. Calculate these integrals. Circle your answers.
(a) $\int \frac{7}{|x| \sqrt{x^{2}=9}} d x=$ \qquad (5)
(b) $\int \frac{3}{\sqrt{1-(5 x+3)^{2}}} d x=$
(5)
(c) $\int \frac{5 x}{4+x^{2}} d x=$ \qquad
(5)
(d) $\int \frac{5}{4+9 x^{2}} d x=$ \qquad
(5)
13. People
(a) What was Alexander Calder's major in college?
(b) Tell me something about John von Neuman from the biography:
(2)
14. Use your calculator to evaluate $\int_{0}^{3} \arctan (x) d x=\square$ (4 decimal places)
(3)

