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15.4.5  Theorems of Green, Stokes and Gauss:  An Introduction 
 

The final sections of this text deal with the last three fundamental theorems of calculus, the theorems of 

Green, Stokes and Gauss.  Each of these theorems extends the ideas of our earlier fundamental theorem of 

calculus to situations for vector-valued functions, and each has important applications to fields of physics 

and even to Maxwell’s equations for magnetism and electricity.  These theorems are technically 

sophisticated and difficult to prove, but the main ideas behind them are remarkably geometric and 

straightforward.  The goal of this section is to approach these theorems geometrically and to illustrate why 

the ideas behind them are “easy and natural.”  The theorems will be clearly and precisely presented in the 

following sections and partial proofs will be given; the presentation in this section can help you understand 

what the theorems are saying and perhaps help you to remember them. 

 

Introduction to Green’s Theorem 

 

Calculus deals with infinite collections of points, but sometimes a finite situation can 

give insight into the infinite. 
 

In the following, R is a simple, simply-connected region consisting of a finite 

collection of cells. The boundary of R is a simple closed curve C (C consists of only 

the exterior edges of R).  (Fig. 1) 
 

Version 1 Green’s Theorem:  Divergence and Flux 
 

Suppose water flows through the region R.  Let’s attach in-out flows to the 

edges of each cell.  If we define the divergence of a cell to be the net outward 

flow of the cell then we can calculate the net outward flow of the collection of 

cells along the boundary of the collection – let’s call this the flux across C. 
 

We can calculate this flux in Fig. 2 in two ways.  One way is to go around the  

boundary and add up the outward flows (counted as positive) and the inward 

flows (counted as negative). But if we add up the divergences for each cell in Fig. 2 we  

get the same net outward flow for the collection, the flux across C.  This will always 

be true since for each inside boundary between cells, the outward flow from one cell 

becomes the inward flow into the next cell (Fig. 3) so the sum of those two flows will 

be zero, and that is the case for every shared edge inside the collection. Then the 

sum of all of the individual cell divergences is equal to just the sum of the flows on 

the outside edges (Fig. 4).  This can be stated as  
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In words:  The sum of all of the individual cell divergences is equal  

 to the sum of the flows on the outside edges (Fig. 4). 
 

Finite version (divergence-flux form Green’s Theorem): 

 

R
! {divergence of cell} =

C
! {flow across each outside edge}

 

= {flux across C} . 

 

Integral version (divergence-flux form Green’s Theorem):  For  

 

F = M(x,y), N(x,y)  

 

 

R
!! div F  dA =

C
! F •n ds = flux across C  

 

Version 2 Green’s Theorem:  Curl and Circulation 
 

Instead of looking at flow across edges of the cells, consider flow along each edge of  

a cell as in Fig. 5, and define the curl of each cell to be the sum of the flows around 

the edges of the cell counting flows in the counterclockwise direction to be positive 

and flows in the clockwise direction to be negative.  On each inside shared edge  

(Fig. 6) the flow gets counted once as positive and once as negative so the sum of those 

two flows is 0.  But this happens along every inside edge.  If we add all of the curls 

together, the only flows that are not cancelled out in this way are the flows along the 

exterior edges of the collection, the flows along C (Fig. 7).  This total flow around the 

boundary C of the collection is called the circulation. 
 

In words: The circulation around the boundary C equals  

 the sum of the circulations (curls) on the cells of R. 
 
Finite version (Green’s Theorem): 

 

C
! {flow along outside edge} =  

R
! curls dA  

 
Integral version (curl-circulation form Green’s Theorem):  For 

 

F = M(x,y), N(x,y)

 

 

C
! F •T ds =

R
!! curl F  dA =

R
!!
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If we could just take limits as all of the cells got smaller and smaller (it is not so easy) 

we would have both versions Green’s Theorem which is discussed in Section 15.5: 

 

R
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C
! F •n d =

C
! M dy – N dx = flux 
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C
! F •T ds =

C
! M dx +N dy = circulation  
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Problems 
 

1. For Fig. 8 verify that the sum of the divergences of all of the cells is equal 

to the flux across the boundary of the region. 
 

2. For Fig. 9 verify that the sum of the curls of all of the cells is equal to the 

circulation around the boundary of the region. 

 

Answer 1:  A divergence = 9, B div = –1, C div = 2, D div = 1, so 

 

div =! 11.   

Flux across the boundary = (7)+(4)+(–5)+(3)+(6)+(–3)+(4)+(–5)=11. 
 

Answer 2:  A curl = 14, B curl = 10,  

      C curl =(6)+(–5)+(–5)+(–2)+(–3)= –9 , D curl = 19, so 

 

curl =!  34. 

      Circulation around the boundary = 34. 
 

The following theorems of Stokes and Gauss extend Green’s Theorem to higher dimensions. 

 

Stokes’ Theorem:  Curl and Circulation 
 

In Green’s Theorem R was a planar region with boundary curve C  (Fig. 10).  

Now suppose that the region R is a soap film and the boundary C is a rigid 

wire.   If we gently blow on R to create an oriented, smooth surface  

with the same boundary C then each cell in the region R  becomes a cell on 

the surface S.  Just like in Green’s Theorem, on each inside shared edge (Fig. 

11) the flow gets counted once as positive and once as negative so the sum of 

those two flows is 0.  But this happens along every inside edge.  If we add all 

of the curls together, the only flows that are not cancelled out in this way are 

the flows along the exterior edges of the collection, the flows along the 

boundary C.  This total flow around the boundary C  is called the circulation. 
 

In words: The circulation around the boundary C equals  

 the sum of the circulations (curls) on the cells of surface S. 
 
Finite version (Stokes’ Theorem): 

 

C
! {flow along outside edge} =  

R
! curls dA  

 
Integral version (Stokes’ Theorem):    

 

C
! F • T ds =

C
! F • dr =

S
!! curl F •n dS  
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Gauss/Divergence Theorem:  Flux and Divergence 
 

In Green’s Theorem R was a planar region with boundary curve C, and  

the sum of the internal cell divergences was equal to the flux across the 

boundary C.  Now suppose that instead of a region R in 2D there is a  

solid region E in 3D, a volume, and that the boundary  

(skin) of E is a surface S.  Also imagine that E is partitioned  

into little 3D cells, and that each of these internal cells has a divergence, a net 

outward flow. 
 

Just like in Green’s Theorem, on each inside shared cell face the flow gets 

counted once as positive and once as negative so the sum of those two flows is 

0.  But this happens along every inside cell face.  If we add all of the flows 

(divergences) for each cell together, the only flows that are not cancelled out in 

this way are the flows across the exterior faces of the collection, the flows across  

the boundary surface S.  This total flow across the boundary S of the solid E is  

called the flux across S. 
 

In words: The flux across the boundary S equals  

 the sum of the divergences on the cells of solid E. 
 

Finite version (Gauss/Divergence Theorem): 

 

flux across S =
S
! F •n dA =  

E
! divs dV  

 
Integral Version: 

 

flux across S =
S
!! F •n dA =

E
!!! div F  dV  

 

Wrap up 
 

In the following sections these theorems will be more carefully presented and partially proved, and we will 

actually do calculations using them.  These are the final big three theorems of calculus, and they are both 

beautiful and very useful. 


