8.6 Integrals of Trigonometric Functions Contemporary Calculus

8.6 Integrals of Trigonometric Functions

There are an overwhelming number of combinations of trigonometric functions which appear in integrals,
but fortunately they fall into a few patterns and most of their integrals can be found using reduction
formulas and tables of integrals. This section examines some of the patterns of these combinations and

illustrates how some of their integrals can be derived.

Products of Sine and Cosine: f sin(ax)*sin(bx) dx , f cos(ax)*cos(bx) dx , f sin(ax)*cos(bx) dx

All of these integrals are handled by referring to the trigonometric identities for sine and cosine of sums
and differences:

sin(A + B) = sin(A)cos(B) + cos(A)sin(B)

sin(A — B) = sin(A)cos(B) — cos(A)sin(B)

cos(A + B) = cos(A)cos(B) — sin(A)sin(B)

cos(A — B) = cos(A)cos(B) + sin(A)sin(B)

By adding or subtracting the appropriate pairs of identities, we can write the various products such as

sin(ax)cos(bx) as a sum or difference of single sines or cosines. For example, by adding the first two
1
identities we get 2sin(A)cos(B) = sin(A + B) + sin(A — B) so sin(A)cos(B) =7 { sin(A+B) + sin(A-B)

}. Using this last identity, the integral of sin(ax)cos(bx) for a# b is relatively easy:

1
2

—cos( (a-b)x )
a-b

—cos( (a+b)x )
a+b

f sin(ax)cos(bx) dx = f % { sin( (a+b)x ) + sin( (a-b)x ) } dx =

{

}+C.

The other integrals of products of sine and cosine follow in a similar manner.

If a#b, then
[ sin(ax)sinox) dx = 3 { SnCEy) DR (e ENINE
f cos(ax)cos(bx) dx = % {sm( a(a—_IE)X) sin( a(TE)X) [P

-1  cos((a-b)x)

cos( (a+b)x )

f sin(ax)*cos(bx) dx ) a-b

a+b

}+C
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If a=Db, we have patterns we have already used.

.2 X sin(2ax) X sin(ax)*cos(ax)
f sin”(ax) dx =3 -~ 4a =5 -~ %2
X sin(2ax X sin(ax)*cos(ax
fcosz(ax)dx =7 %+C=§ +% +C
. sinz(ax) 1 — cos(2ax)
f sin(ax)*cos(ax)dx = ——5,  +C = — 1,  +C
. . 2 1 — cos(2ax)
The first and second of these integral formulas follow from the identities sin“(ax) = —— > — and
2 1 + cos(2ax) . . . . .
cos"(ax)= — 5, and the third can be derived by changing the variable to u = sin(ax).

Powers of Sine and Cosine Alone: f sinn(x) dx, f cosn(x) dx

All of these antiderivatives can be found using integration by parts or the reduction formulas (formulas 19
and 20 in the integral tables) which were derived using integration by parts. For small values of m and n

it is just as easy to find the antiderivatives directly.

Even Powers of Sine or Cosine Alone

For even powers of sine or cosine, we can successfully reduce the size of the exponent by repeatedly

. . .. ) 1 — cos(2x) 2 1 + cos(2x)
applying the identities sin"(x)= —— 75~ and cos"(x)= — o

Example 1:  Evaluate f sin4(x) dx .

Solution:  sin*() = £ sin 2 1 2 1 2
olution: sin"(x)={sin"(x) }* = {73 [1-cos(2x)]}" = 7 {1-2cos(2x) + cos™(2x) } so

f sin4(x) dx = f % {1-2cos(2x) + cosz(2x) }dx

1 - ,
=7 {x +sin(2x) + %er "

Practice 1: Evaluate f cos4(x) dx .
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Odd Powers of Sine or Cosine Alone

For odd powers of sine or cosine we can split off one factor of sine or cosine, reduce the remaining even
exponent using the identities sinz(x) =1- cosz(x) or cosz(x) =1- sinz(x) , and finally integrate by

changing the variable.

Example 2:  Evaluate f sins(x) dx .

Solution: sins(x) = sin4(x) sin(x) = { sinz(x) }2 sin(x) ={1- cosz(x) }2 sin(x)

={1-2 cosz(x) + cos4(x) } sin(x) .
Then f sins(x) dx = f sin(x) dx —2f cosz(x)sin(x) dx +f cos4(x)sin(x) dx .

The first integral is easy, and the last two can be evaluated by changing the variable to u = cos(x) :
COSB(X) COSS(x)
[ sndan = —costm-2{ 2552 34 {50 e

Practice 2: Evaluate f coss(x) dx .

Patterns for f sinm(x) cosn(x) dx

If the exponent of sine is odd, we can split off one factor sin(x) and use the identity
sinz(x) =1- cosz(x) to rewrite the remaining even power of sine in terms of cosine. Then the change of

variable u = cos(x) makes all of the integrals straightforward.
) f .3 6
Example 3:  Evaluate J sin™(x) cos (x) dx .

Solution: sin3(x) COS6(X) = sin(x) sinz(x) cosG(x) =sin(x) {1- cosz(x) } COS6(X)
= sin(x)cos6(x) - sin(x)cosg(x) .

Then fsinB(x) cosG(x) dx = fsin(x)cos6(x) - sin(x)cosg(x) dx (putu=cos(x))

cos7(x) cosg(x)
=- "7 + 79 +C.

Practice 3: Evaluate f sin3(x) cos4(x) dx .
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If the exponent of cosine is odd, we can split off one factor cos(x) and use the identity

cosz(x) =1- sinz(x) to rewrite the remaining even power of cosine in terms of sine. Then the change of

variable u = sin(x) makes all of the integrals straightforward.

1
If both exponents are even, we can use the identities sinz(x) =75 (1 -cos(2x)) and

1
cosz(x) =75 (1 + cos(2x) ) to rewrite the integral in terms of powers of cos(2x) and then proceed with

integrating even powers of cosine.

Powers of Secant and Tangent Alone: f secn(x) dx , f tann(x) dx

All of the integrals of powers of secant and tangent can be evaluated by knowing

f sec(x) dx = Inlsec(x) + tan(x) | + C and
f tan(x) dx = —Inl cos(x) | + C = Inlsec(x) |+ C
and then using the reduction formulas

secn_z(x)'tan(x) n—2 2
f sec"(x) dx = -1 +n-1 f sec” “(x) dx and

f tan™ _ t'ﬂlnn_l(x) n-2
an (x)dx = — 7 —ftan (x)dx .

Example 4:  Evaluate f secB(x) dx .

Solution: Using the reduction formula with n =3,
°t 1 ot
J‘ sec3(x) dx = sec(x)2 an(x) ‘5 J‘ sec(x) dx = sec(x)2 an(x)

Practice 4: Evaluate f tan3(x) dx and f secs(x) dx .

Patterns for f secm(x)'tann(x) dx

+ % Inl sec(x) + tan(x) | +C.

The patterns for evaluating f secm(x)'tann(x) dx are similar to those for f sinm(x)'cosn(x) dx

because we treat the even and odd powers differently and we use the identities tanz(x) = secz(x) —1 and

secz(x) = tanz(x) +1.
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If the exponent of secant is even, factor off secz(x), replace the other even powers (if any) of secant using
secz(x) = tanz(x) + 1, and make the change of variable u = tan(x) (then du = secz(x) dx).

If the exponent of tangent is odd, factor off sec(x)tan(x), replace the remaining even powers (if any) of

tangent using tanz(x) = secz(x) — 1, and make the change of variable u =sec(x) (then du = sec(x)tan(x) dx ).

If the exponent of secant is odd and the exponent of tangent is even, replace the even powers of tangent
using tanz(x) = secz(x) — 1. Then the integral contains only powers of secant, and we can use the patterns

for integrating powers of secant alone.

Example 5: Evaluate f sec(x)'tanz(x) dx .

Solution: Since the exponent of secant is odd and and the exponent of tangent is even, we can use the

last method mentions: replace the even powers of tangent using tanz(x) = secz(x) —1. Then

f sec(x)'tanz(x) dx = f sec(x)*{ secz(x) —-1}dx

= f sec3(x)—sec(x) dx = f secB(x) dx — f sec(x) dx

{ sec(x)zw + % Inl sec(x) + tan(x) | } — Inl sec(x) + tan(x) | +C

t
Sec(x)z—’m(x) ~ 3 Inl sec(o) + tan(x) | +C.

Practice 5: Evaluate f sec4(x)'tan2(x) dx .

Wrap Up

Even if you use tables of integrals (or computers) for most of your future work, it is important to realize
that most of the integral formulas can be derived from some basic facts using the techniques we have

discussed in this and earlier sections.
PROBLEMS
Evaluate the integrals. (More than one method works for some of the integrals.)

1. fsin2(3x) dx 2. fcosz(Sx) dx 3. fex'sin(ex)'cos(ex) dx

1
4. J < =sin?(In(x) ) dx 5. sin*Gx) dx 6. 4 cos*(5x) dx

O = a
O = a
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7. } sin>(7x) dx 8. } cos>(5x) dx 9. J sin(7x)°cos(7x) dx
0 0

10. J sin(7x)*cos2(7x) dx 1. J sin(7x)cos>(7x) dx  12. J sin2(3x)*cos(3x) dx

13. f sin2(3x)'cosz(3x) dx 14. f sin2(3x)'0053(3x) dx 15. f secz(Sx)'tan(Sx) dx

16. J sec’(3x)'tan’(3x) dx 17. J sec’3x)tan(3x) dx  18. J sec>(5x)'tan’(5x) dx

The definite integrals of various combinations of sine and cosine on the interval [0, 27] exhibit a
number of interesting patterrns. For now these patterns are simply curiousities and a source of additional
problems for practice, but the patterns are very important as the foundation for an applied topic, Fourier

Series, that you may encounter in more advanced courses.

The next three problems ask you to show that the definite integral on [0, 25t] of sin(mx) multiplied by almost
any other combination of sin(nx) or cos(nx) is 0. The only nonzero value comes when sin(mx) is multiplied

by itself.
2

19. Show thatif m and n are integers with m # n, then f sin(mx)*sin(nx) dx =0.

2n

20. Show thatif m and n are integers, then f sin(mx)*cos(nx) dx =0. (Considerm=n and m#n.)

2n

21. Show thatif m# 0 is an integer, then f sin(mx)*sin(mx) dx = 7.
0

22. Suppose P(x) = 5°sin(x) + 7°cos(x) — 4+sin(2x) + 8+cos(2x) — 2+sin(3x). (This is called a trigonometric

polynomial.) Use the results of problems 19-21 to quickly evaluate

27 27
1 f . 1 f .
(@ a=73 sin(1x)°P(x) dx (b) a,=7% sin(2x)°P(x) dx
0 0
27 27
1 f . 1 f .
(© a3=73 sin(3x)°P(x) dx d ay=7% sin(4x)°P(x) dx
0 0

(e)  Describe how the values of a; are related to the coeffiecients of P(x).

(f)  Make up your own trigonometric polynomial P(x) and see if your description in part (e) holds
for the a; values calculated from the new P(x).

(g)  Justby knowing the a; values we can "rebuild" part of P(x). Find a similar method for getting

the coefficients of the cosine terms of P(x): b; =?7?
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2n

23. Show that if nis a positive, odd integer, then f sinn(x) dx =0.
0

27 27
24. Itis straightforward (using formula 19 in the integral table) to show that f sinz(x) dx =m, f
0 0
271 271
3 53
sin4(x) dx =7 m,and f sin6(x) dx=g7 m (a) Evaluate f sing(x) dx .
0 0
27
(b)  Predict the value of f sinlo(x) dx and then evalaute the integral.
0
Section 8.6 Practice Answers

1
Practice 1: f cos4(x) dx { Use cosz(x) =75 (1+cos(2x)) }

2 2 1 1
[ cos’x)cos’x)dx = [ 7(1+cos(2x))7 (1 +cos(2x)) dx

1 1 1
=7 f 1 +2cos(2x) + c052(2x) dx =7 f 1 +2cos(2x) +7 { 1+ cos(4x) } dx

1 3 1 3 1 . 1 .
=7 f 5 +2cos(2x) +7 cos(4x) dx = g x+ 7 sin(2x) + 37 sin(4x) + C.

Practice 2: f coss(x) dx = f cosz(x)'cosz(x)'cos(x) dx = f (1- sinz(x) (1- sinz(x) ) cos(x) dx

= f {1- 2sin2(x) + sin4(x) }eos(x) dx

f cos(x)dx — 2 f sinz(x)'cos(x) dx + f sin4(x)'cos(x) dx (Use u=sin(x), du=cos(x) dx)

. 2 .3 1l .5
sin(x) — 3 sin"(x) + § sin"(x) + C.

Practice 3: f sin3(x)'cos4(x) dx = f sin(x)'sinz(x)'cos4(x) dx = f sin(x)*(1 —cosz(x) )'cos4(x) dx

f sin(x)'cos4(x) dx — f sin(x)'cos6(x) dx (Use u=cos(x), du=-sin(x) dx)

1 5 1 7
-5 cos(x) + 7 cos' (x) + C
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1 1
Practice 4: f tan3(x) dx = 3 tanz(x) - f tan(x) dx = 75 tanz(x) — Inlsec(x) |+ C.
5 l 3 3 3
f sec”(x) dx = 5 sec”(x)*tan(x) + Zf sec” (x) dx

= 5 sec (x)tan(x) + % {% sec(x)*tan(x) +%f sec(x) dx }

3 3
=7 secB(x)'tan(x) + g sec(x)'tan(x) + g Inlsec(x) + tan(x) | + C.

Practice 5: f sec4(x)'tan2(x) dx = f secz(x)'secz(x)'tanz(x) dx

[ sec?(0)-(tan’(x) + 1)tan’(x) dx

f secz(x)'tan4(x) dx + f secz(x)'tanz(x) dx (Use u=tan(x), du= secz(x) dx)

l 5 l 3
35 tan"(x) + 3 tan"(x) + C.



