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13.3 PARTIAL DERIVATIVES 
 

For a function  y = f(x)  of one variable, the derivative  
d y
d x    measured the rate of change of the variable  y  

with respect to the variable  x.  For a function  z = f(x,y)  of two variables we can ask about the rate of 

change of  z  with respect to the variable  x  or  the variable  y:  how do changes in  x  effect  z, and how do 

changes in  y  effect  z?  In scientific and economic settings with many variables, it is common to try to 

determine the effect of each variable by holding all of the other variables constant and then measuring the 

outcomes as that single variable in allowed to vary. 
 

Example 1: The table of data in Fig. 1 shows the number of 

 thousands of gallons of drinks sold at a sports stadium  

 as a function of the temperature at the beginning of the game 

 and the number of people attending the game.  At a game 

 with 30,000 people on a  70o day, 

 (a) what is the average rate of change of drink sales as the 

temperature rises to 80o? 

 (b) what is the average rate of change of drink sales as the 

attendance increases to 40,000 people? 
 
Solution: (a) In this situation the attendance is constant at 

30,000 people, and the temperature changes  

   from 70o  to  80o.  The average rate of change is   
 

  
f(30,80o) – f(30,70o)

80o – 70o    =  
15000 – 6000 gallons

10o    =  900 gallons per degree rise in temperature. 

  (b) In this case the temperature is constant at 70o, and the attendance changes from 30,000 

 people to 40,000 people.  The average rate of change is 
 

  
f(40,70) – f(30,70)

40000 – 30000    =  
12000 – 6000 gallons

10000 people    =  0.6  gallons per additional person in attendance. 
  

 Note that these rates of change depend on the starting attendance and temperature as well as on the variable 

that is allowed to change.  You should also notice that the units of the two answers are different –– one is 

"gallons/degree" and the other is "gallons/person." 
 
Practice 1: Using the data in Fig. 1 and at a game with 20,000 people on a  80o day, 

  (a) what is the average rate of change of drink sales as the temperature rises to 90o? 

  (b) what is the average rate of change of drink sales as the attendance increases to 30,000 people? 
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The definition of a partial derivative follows from this idea of holding one variable constant and measuring 

the rate of change as the other variable changes. 

 
 
 Definition: 
 
 The partial derivative of  f(x,y)  with respect to  x  at the point  (a,b)  is 
 

  fx(a,b)  =  

 

lim
h!0

f (a + h,b) " f (a,b)
h

    (if the limit exists and is finite). 

 
 Meaning: fx(x,y)  measures the instantaneous rate of change of  f  at the point  (x,y)  in the  

   direction of increasing  x  values. 
 
 To calculate  fx(x,y)  when  z = f(x,y) is given by a formula,  

   treat  y as a constant and differentiate with respect to  x. 
    
 
Example 2: (a) For  f(x,y) = 3x2 + 7y2 – 10xy,  find  fx(x,y) , fx(1,2)  and  fx(3,1). 

 (b) For  g(x,y) = sin( 3xy ) + ln( 5y ) + x3y5 , find  gx(x,y)  and  gx(1,2) . 

 
Solution: (a) fx(x,y) = 6x + 0 – 10y  = 6x – 10y and fx(1,2) = 6(1) – 10(2) = –14.  fx(3,1) = 6(3) – 10(1) = 8. 

 (b) gx(x,y) = 3y.cos( 3xy ) + 0 + 3x2y5 and   

  gx(1,2) = 3(2)cos( 3(1)(2) ) + 3(1)2(2)5 =  6cos(6) + 96  ≈  101.8 . 
 
Practice 2: (a)  For  f(x,y) = x3 + 4y2 + 5x2y,  find  fx(x,y)  and  fx(2,5).  

 (b)  For  g(x,y) =  exy + 
x
y   ,  find   gx(x,y)  and  gx(0,2) .  

 
 

We can also interpret the partial derivatives graphically.  The graph of   

z = f(x,y)  is typically a surface (Fig. 2)  and the graph of   

"y = a constant" is a plane, so the graph of  "z = f(x,y) with  y   

held constant"  is the curve resulting from the intersection of the 

surface and the plane.  Fig. 3 shows such a surface and plane and 
their curve of intersection when  y = 2.  fx(1,2)  is the slope of the 

line tangent to this curve at the point  (1,2)  as shown in Fig. 4. 
 

Example 3: Use the information in Fig. 4 to estimate  
  the value of   fx(1,2). 
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Solution: We can estimate the slope of the tangent line in Fig. 4 by 

picking two points on the line and calculating the slope of 

the line connecting the two points.  It looks like  (0,3)  and  

(2,5)  are points on the tangent line, and the slope of the 

segment between those two points is  
5 – 3
2 – 0   =  1.  Then we 

estimate  fx(1,2) ≈ 1. 
 

Practice 3: Use the information in Fig. 4 to estimate  
  the values of  f(3,2)  and  fx(3,2). 

 
The partial derivative with respect to y  is similar, but now we treat  x  as the constant. 

 
 
 Definition: 
 
 The partial derivative of  f(x,y)  with respect to  y  at the point  (a,b)  is 
 

  fy(a,b)  =  

 

lim
h!0

f (a,b + h) " f (a,b)
h

   (if the limit exists and is finite). 

 
 Meaning: fy(x,y)  measures the instantaneous rate of change of  f  at the point  (x,y)  in the   

   direction of increasing  y  values. 
 
 To calculate  fy(x,y)  when  z = f(x,y) is given by a formula,  

   treat  x as a constant and differentiate with respect to  y. 
    
 

Example 4: (a) For  f(x,y) = 3x2 + 7y2 – 10xy,  find  fy(x,y) ,  fy(1,2) , and  fy(3,1). 

 (b) For  g(x,y) = sin( 3xy ) + ln( 5y ) + x3y5 , find  gy(x,y)  and  gy(1,2) . 
 
Solution: (a) fy(x,y) = 0 + 14y – 10x  = 14y – 10x.  Then  fy(1,2) = 14(2) – 10(1) = 18 and  fy(3,1) = –16. 

 (b) gy(x,y) = 3x.cos( 3xy ) + 
5
5y  + 5x3y4 .  Then   

   gy(1,2) = 3(1).cos( 3(1)(2) ) + 
5

5(2)  + 5(1)3(2)4 ≈  2.88 + 0.5 + 80  =  83.38 . 
 

Practice 4: (a) For  f(x,y) = x3 + 4y2 + 5x2y,  find  fy(x,y)  and  fy(2,5).  

 (b) For  g(x,y) =  exy + 
x
y   ,  find   gy(x,y)  and  gy(0,2) . 

 
 
 Notations:  The following notations are all commonly used to represent partial derivatives of  z = f(x,y) 
 

 fx(x,y) = fx  =  
∂f
∂x   =  

∂
∂x  f(x,y)  =  

∂z
∂x   =  Dx f Partial derivative of  f  with respect to  x 

 

 fy(x,y) = fy  =  
∂f
∂y   =  

∂
∂y  f(x,y)  =  

∂z
∂y   =  Dy f Partial derivative of  f  with respect to  y 
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Example 5: Use the information in Figures 5 and 6 to  
 estimate the value of   fy(1,2). 
 

Solution: Fig. 5 shows the surface  z = f(x,y)  and the  

 plane  x = 1, but it is difficult to estimate the value of  
fy(1,2)  from it.  Fig. 6  shows the intersection of the surface 

graph with the plane, and the tangent line at the point  (1,2) 
is included.  We can estimate the value of  fy(1,2)  by 

picking two points on the tangent line and calculating the 

slope between them.  It looks like  (1,2)  and  (3,6)  are points 

on the tangent line, and the slope of the segment  is  
6 – 2
3 – 1   =  2.  

Then we estimate  fy(1,2) ≈ 2. 
 

Practice 5: Use the information in Figures 5 and 6 to  

 estimate the signs  (positive, negative or zero) of  
 (a)   fy(1,3),    (b)   fy(1,1), and  (c)   fy(1,4). 

    
Partial Derivatives in Context 
   

Of course it is very important to be able to calculate partial derivatives, but it also important to understand 

and to be able to communicate what they mean and measure.  And you need to be able to attach the correct 

units to your answers. 

 

Example 6: The surface area A (square inches) of a small child is a function of the length L (inches) and 

the weight W (pounds) of the child:   A = A( L, W). Explain (in clear English sentences) the meaning of  

the following.  Be sure to include units. 
 (a) A( 26, 46 ) = 164    (b) 

 

!A(26,46)
!W

= 7     (c) 

 

!A(26,46)
!L

= 5  

Solution:  (a) A( 26, 46 ) = 164  square inches. A child who is 26 inches long and weighs 46 pounds will 

have a surface area of 164 square inches. 

 

(b) 

 

!A(26,46)
!W

= 7  square inches per pound . The surface area of this child (length 26 inches, weight 46 

pounds, area 164 square inches) is increasing at an INSTANTANEOUS RATE of 7 square inches 

per each additional pound of weight if the length stays constant.  Units:  (square inches)/pound 

(c) 

 

!A(26,46)
!L

= 5  square inches per inch. The surface area of this child (length 26 inches, weight 46 

pounds, area 164 square inches) is increasing at an INSTANTANEOUS RATE of 5 square inches 

per each additional inch of length if the weight stays constant.   Units:  (square inches)/inch 
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Practice 6: A certain biotech process using bacteria to produce a vaccine V (in grams) depends on the number 

B of bacteria and the temperature T (in 

 

oC ) of the laboratory:   V = V( B, T). Explain (in clear English 

sentences) the meaning of  the following.  Be sure to include units. 

 (a) 

 

V (2000,40) = 8.9     (b) 

 

!V (2000,40)
!B

= 0.003    (c) 

 

!V (2000,40)
!T

= "1.4  

Partial Derivatives and Level Curves 
 

Level curves of a surface  z = f(x,y)  give us information about  f  and also about the rate of change of  f  as  
x  and  y  increase, the partial derivatives  fx  and  fy . 

 

Example 7: Use the information in Fig. 7 to estimate the signs 

 (positive, negative or zero) of   
 (a)  fx(3,2)  and  (b)  fy(3,2) . 
 
Solution: (a) As we move through the point  (3,2)  in the increasing 

   x  direction (Fig. 8a), the  level curves are increasing   
   in value so  fx(3,2)  is positive.   Fig. 8b shows the  

 

  

graph of  z  along the line segment of 

increasing x–values  (y is constantly 2), and 

the slope of the tangent line to this graph is 
positive when  x = 3   so  fx(3,2)  is positive. 

 

(b)  As we move through the point  (3,2)  in 

the increasing  y  direction (Fig. 9a), the  

level curves are decreasing in value so  
fy(3,2)  is negative.   Fig. 9b shows the graph 

of  z  along the line segment of increasing y–

values  (x is constantly 3), and the slope of 

the tangent line to this graph is negative 
when  y = 2   so  fy(3,2)  is negative. 

 

Note:  If the level curves are close together in our direction of movement, then the z–values are changing 

rapidly in that direction and the magnitude (the absolute value of the magnitude) of the rate of 

change in that direction is large.  For the function described by the level curves in Fig. 7,   
 | fx(3,2) | > | fy(3,2) |  because the level curve lines are closer together as when we move  

 from  (3,2) in the x–direction than when we move in the  y–direction. 
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Practice 7: Use the information in Fig. 7 to estimate the signs (positive, negative or zero) of   
  fx(3,1) ,  fy(3,1) , fx(1,1)  and  fy(1,1) .  Which of these partial derivatives has the largest  

  absolute value? 

 

Second Partial Derivatives 
 

For a function  y = f(x) of one variable,  the second derivative  f "(x) =  
d

d x (  
d f
d x )   =  

d2 f
d x2    is the rate  

of change of the rate of change of  f, and it measures the concavity of the graph of  f.  The situation for   

z = f(x,y)  is similar.  The second derivative of a function of one variable was used to determine whether  

a critical point was a local maximum or minimum, and the second partial derivatives will be used to help 

determine whether critical points of functions of two variables are local maximums or minimums. 
 
 
 Definition: Second Partial Derivatives of  z = f(x,y): 
 

  fxx(x,y) = fxx  =  
∂
∂x ( 

∂f
∂x )   =  

∂2f
∂x2   =  

∂2z
∂x2    differentiate twice with respect to  x 

 

  fyy(x,y) = fyy  =  
∂
∂y ( 

∂f
∂y )   =  

∂2f
∂y2   =  

∂2z
∂y2    differentiate twice with respect to  y 

 

 
fxx(x,y)  measures the concavity of the graph of  f  in the x–direction.  fyy(x,y)  measures the concavity in 

the  y–direction. 
 

We can also differentiate first with respect to one variable and then differentiate the result with respect to 

the other variable. 

 
 
 Definition: Second Mixed Partial Derivatives of  z = f(x,y): 
 

 fxy  = ( fx )y  =  
∂
∂y ( 

∂f
∂x )   =  

∂2f
∂y∂x        differentiate first with respect to x, then with respect to y 

 

 fyx  = ( fy )x  =  
∂
∂x ( 

∂f
∂y )   =  

∂2f
∂x∂y       differentiate first with respect to y, then with respect to x 

 
 
fxy(x,y)  measures the rate of change in the y–direction of the rate of change in the x–direction.  This is more 

difficult to interpret graphically. 
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Note how order of the x and y changes depending on the notation:  fxy  =  
∂
∂y ( 

∂f
∂x )   =  

∂2f
∂y∂x     and  fyx  =  

∂2f
∂x∂y  . 

 
Example 8: For  f(x,y) = 3x3 + 7y4 – 10x2y,  calculate  fxx , fyy , fxy  and  fyx . 
 
Solution: fx = 9x2 – 20xy  and fy = 28y3 – 10x2 .  Then 
 

 fxx = 
∂
∂x ( 9x2 – 20xy )  = 18x – 20y.   fyy = 

∂
∂y ( 28y3 – 10x2 )  = 84y2  . 

 

 fxy = 
∂
∂y ( 9x2 – 20xy )  = –20x .   fyx = 

∂
∂x ( 28y3 – 10x2 )  = –20x . 

 

Practice 8: For  g(x,y) = exy + 
x
y    ,  calculate  gxx , gyy , gxy  and  gyx . 

 
In the previous Example and Practice it turned out that the mixed partials were equal:  fxy  =  fyx  and   gxy  =  gyx . 

The next theorem says this is always the case for "nice"  (sufficiently smooth) surfaces. 
 
 
 
 Clairaut's Theorem:  
 
 If f(x,y) is defined and continuous at (a,b) and for all points near (a,b)   
  and  fxy  and  fyx  are both continuous at all points near  (a,b), 
 
 then fxy(a,b)  =  fyx(a,b) .  
 
 
 

We can also define higher partial derivatives in a natural way such as fxyy =  ( fxy )y =  
∂
∂y ( 

∂2f
∂y∂x )   =  

∂3f
∂y∂y∂x    .  

These higher partial derivatives are sometimes useful in physics and other areas , but we will not use them. 

 

Partial Derivatives Implicitly 
In all of the previous examples we knew z explicitly as a function of  x  and  y.  But sometimes it is not 

possible to algebraically isolate  z in order to calculate a partial derivative.  In that case we can still 

determine the partial derivatives, but we need to do so implicitly. 

Example 8:   xy + yz = xz .  Determine    
∂z
∂x    and    

∂z
∂y  in general and at the point  ( 3, 2, 6). 

Solution:  In this case we can calculate the partial derivatives both explicitly and implicitly. 

Explicitly:  Solving for z we get  xy = xz – yz  so  

 

z =
xy
x ! y

.  Then, using the quotient rule, 

 

 

!z
!x

=
(x " y)# !(xy)

!x
" xy#

!(x " y)
!x

x " y( )2
 

 

=
(x ! y)" y ! xy" 1

x ! y( )2
=

!y2

x ! y( )2
. 
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 At  ( 3, 2, 6), 

 

!z
!x

= -4.  Similarly, 

 

!z
!y

=
x2

x " y( )2
 which equals  9  at ( 3, 2, 6). 

Implicitly:  Taking the partial derivative of each side,  

 

!
!x
(xy + yz) =

!
!x
(xz),  we get 

 

 

x!
"y
"x

+ y!
"x
"x

# 
$ % 

& 
' ( + y!

"z
"x

+ z!
"y
"x

# 
$ % 

& 
' ( = x!

"z
"x

+ z!
"x
"x

.  But  

 

!y
!x

= 0  (why?) and 

 

 

!x
!x

=1  so the previous equation simplifies to  

 

0 + y[ ] + y!
"z
"x

+ 0
# 
$ % 

& 
' ( = x!

"z
"x

+ z . 

 Then 

 

!z
!x

=
z " y
y " x

  which equals -4 at  ( 3, 2, 6), the same result we got differentiating 

explicitly.  Similarly, 

 

!z
!u

=
x + z
x " y

=
9
1

  at  ( 3, 2, 6). 

Practice 9: 

 

xy2 + sin(z) + 3 = 2x + 3z .  Determine  

 

!z
!x

   in general and at the point  ( 3, 1, 0). 

 

A Final Comment! 

Partial derivatives are used extensively in the remaining sections on multivariate calculus, and it is vital that 

you understand what they measure and that you become able to calculate partial derivatives quickly and 

accurately.  Extra practice now will save you time (and points) in the rest of the course. 

 

PROBLEMS 

   

1. For  f(x,y) = 16 – 4x2 – y2,  find  fx(1,2) and fy(1,2)  and interpret these numbers as slopes.  Illustrate 

with sketches. 

 

2. For  f(x,y) = 4 – x2 – 4y2  ,    find  fx(1,0) and fy(1,0)  and interpret these numbers as slopes.  

Illustrate with sketches. 

 

In problems 3 – 11, find the indicated partial derivatives. 

3. f(x,y) = x3y5 ;    fx(3, –1) 4. f(x,y) = xe–y + 3y ;     
∂
∂y (1, 0)  

 

5. z =  
x3 + y3

x2 + y2   ;       
∂z
∂x    ,    

∂z
∂y   6. z  =  

x
y   +  

y
x  ;     

∂z
∂x   

 

7. xy + yz = xz ;        
∂z
∂x    ,    

∂z
∂y   8. 

 

sin(x) + y! ez = z  ;        ∂z
∂x    ,    

∂z
∂y   

9. 

 

y2 + yz2 = zx2 ;        
∂z
∂x    ,    

∂z
∂y   10. x2 + y2 – z2 = 2x( y + z) ;       

∂z
∂x    ,    

∂z
∂y   

 

11. u = xy sec( xy ) ;     
∂u
∂x   12. f(x,y,z) =  xyz ;     fy(0, 1, 2) 
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13. u = xy + yz + zx ;  ux , uy , uz   

In problems 14 – 29, find the first partial derivatives of the given functions. 

14. f(x,y) = x3y5 – 2x2y + x 15. f(x,y) = x4 + x2y2 + y4    16. f(x,y) =  
x – y
x + y   

 

17. f(x,y) = ex tan( x – y ) 18. f(s,t) =  2 – 3s2 – 5t2   19. f(u,v) =  arctan( u/v ) 
 

20. g(x,y) = y tan( x2y3 ) 21. z = ln( x + x2 + y2   ) 22. z = sinh( 3x + 4y  )  
 

23. f(x,y)  =  ⌡⌠
x

y
   e(t2)  dt 24. f(x,y,z) = x2yz3 + xy – z 25. f(x,y,z)  =  xyz   

 

26. u = z sin(  
y

x + z   )   27. f(x,y,z,t) =  
x – y
z – t     28. u =  x1

2 + x2
2 +  . . .  +  xn

2    
 
29. Use the definition of partial derivatives as limits to find  fx(x,y)  and  fy(x,y)  when  f(x,y) = 5x + x2 – xy + 3y . 

 

30. Use the definition of partial derivatives as limits to find  fx(x,y)  and  fy(x,y)  when  f(x,y) = x2 – xy + 2y2 . 

 
In problems  31 – 33, find     ∂z/∂x  and  ∂z/∂y  . 
 
31. z = f(x) + g(y) 32. z = f(x + y) 33. z = f( x/y ) 

 
In problems  34 –  36,  find all of the second partial derivatives. 
 
34. f(x,y) = x2y +  x y  35. z = ( x2 + y2 )3/2    36. z = t.arcsin( x  ) 

 
In problems 37 and 38,  verify that the conclusion of Clairaut's Theorem holds,  that is,  uxy =  uyx . 
 
37. u = x5y4 – 3x2y3 + 2x2     38. u = arcsin( xy2 ) 
 

39. Verify that the function  u = e–a2k2t sin( kx )  is a solution of the heat equation  ut = a2 uxx  . 
 
40. The total resistance  R  produced by three conductors with resistances  R1, R2 , R3  connected in a 

parallel electrical circuit is given by the formula    
1
R   =  

1
R1   +  

1
R2   +  

1
R3   .    Find   ∂R/∂R1  . 

  

 

 

 

 

 

 



13.3  Partial Derivatives Contemporary Calculus 10 

 

Practice Answers 
 

Practice 1: (a) ( 2000 gallons )/( 10 degrees ) = 200 gallons/degree 

 (b) ( 7000 gallons )/( 10,000 people ) = 0.7 gallons/person       
 
Practice 2: (a) fx(x,y) = 3x2 + 10xy ,  fx(2, 5) = 112 

 (b) gx(x,y) =  y.exy + 
1
y   ,  gx(0, 2) =  2.5 

 
Practice 3: f(3, 2) ≈  9 ,  fx(3, 2) ≈  9  
 
Practice 4: (a) fy(x,y) = 8y + 5x2 ,  fy(2, 5) = 60 

 (b) gy(x,y) = x exy – x/y2 ,  gy(0, 2) = 0 
 
Practice 5: (a)  fy(1, 3) is positive    (b)  fy(1, 1) is approximately 0    (c)  fy(1, 4) is positive 
 
Practice 6: (a) This process will produce 8.9 grams of vaccine when we have 2000 bacteria and  
  the laboratory temperature is 40 oC. 
 (b) The amount of vaccine produced (when we have 2000 bacteria at a temperature of 40 oC)  
  will increase at an INSTANTANEOUS RATE of 0.003 grams for each additional  
  bacteria when the temperature stays constant.  Units:  grams/bacteria 
 (c) The amount of vaccine produced (when we have 2000 bacteria at a temperature of 40 oC)  
  will decrease at an INSTANTANEOUS RATE of 1.4 grams for each degree increase in  
  temperature when the number of bacteria stays constant.  Units:  grams/ oC 

 
Practice 7: fx(3,1) is positive ,  fy(3,1) is negative ,  

 fx(1,1) is zero (z has alocal max for increasing x values) ,  and  fy(1,1) is negative .   

 I estimate that  fy(3,1)  has the largest absolute value  (contour lines are closest together). 
 

Practice 8: If  g(x,y) =  exy + 
x
y   , then   

 gx =  y.exy + 
1
y    gy =  x.exy – 

x
y2   . 

 gxx =  
∂
∂x ( y.exy + 

1
y )  = y2.exy  gyy = 

∂
∂y ( x.exy – 

x
y2  )  = x2.exy + 

2x
y3    

 

 gxy =  
∂
∂y ( y.exy + 

1
y   )  = xy.exy  + exy  – 

1
y2    

  gyx =  
∂
∂x ( x.exy – 

x
y2  )  = xy.exy  + exy  – 

1
y2    

Practice 9: 

 

!
!x
(x" y2 + sin(z) + 3) =

!
!x
(2x + 3z)   so 

 

 

x! 2y!
"y
"x

+ y2 !
"x
"x

# 
$ % 

& 
' ( + cos(z)!

"z
"x

+ 0 = 2!
"x
"x

+ 3!
"z
"x

  which simplifies to 

 

 

y2[ ] + cos(z)!
"z
"x

= 2 + 3!
"z
"x

  so 

 

!z
!x

=
2 " y2

cos(z) " 3
  which equals 

 

1
!2

  at  ( 3, 1, 0). 
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Appendix: Maple commands to graph surfaces and planes –– figures 2 – 6 
 
 > with(plots); (enter)  Loads  plots  routines which enable 3D graphics commands 
 
Plots the surface in Fig. 2 
 > plot3d(3*x+(x-y)^2, x=0..4, y=0..4, axes=normal, grid=[9,9], orientation=[45,50], tickmarks=[4,4,3]); 
 
Calculates and plots the surface, plane and intersection curve in Fig. 3 
 > AX:=plot3d(3*x+(x-y)^2,x=0..4,y=0..4,axes=normal, grid=[9,9], color=red): (return) 
 BX:=plot3d([u,2,v],u=0..4,v=0..25,axes=normal, grid=[9,6],color=green, thickness=0): (return) 
 CX:=spacecurve([u,2,3*u+(u-2)^2],u=0..4, color=black, thickness=2): (return) 
 DX:=spacecurve([u,2,.6+3*u+(u-2)^2],u=0..4, color=black, thickness=2): (return) 
 PX:=pointplot( {[1,2,4]}, color=black, symbol=circle): (return) 
 LX:=spacecurve( [u,2,3+u], u=0..2, color=orange, thickness=2): (return) 
 display3d( {AX,BX,DX,PX,LX}, orientation=[45,50], tickmarks=[4,4,6] ); (enter) 
 
Plots the plane, curve and tangent line in Fig. 4 
 > display3d( {BX,CX,PX,LX}, orientation=[-90,90], view=0..15, tickmarks=[4,4,3]); (enter) 
 
Calculates and plots Fig. 5 and Fig. 6 
 > AY:=plot3d(3*x+(x-y)^2,x=0..4,y=0..4,axes=normal, grid=[9,9], color=red): 
 BY:=plot3d([1,u,v],u=0..4,v=0..25,axes=normal, grid=[9,6],color=blue, thickness=0): 
 CY:=spacecurve([1,v,3+(1-v)^2],v=0..4, color=black, thickness=2): 
 DY:=spacecurve([1,v,.5+3+(1-v)^2],v=0..4, color=black, thickness=2): 
 PY:=pointplot( {[1,2,4]}, color=black, symbol=circle): 
 LY:=spacecurve( [1,v,2*v], v=1..3, color=magenta, thickness=2): 
 display3d( {AY,BY,DY,PY,LY}, orientation=[45,50], tickmarks=[4,4,6] ); 
 
 > display3d( {BY,CY,PY,LY}, orientation=[0,90],view=0..15,tickmarks=[4,4,3]); 
 
 
Similar to the previous commands but at the point  (3,2) 
 > AY:=plot3d(3*x+(x-y)^2,x=0..4,y=0..4,axes=normal, grid=[9,9], color=red): 
 BY:=plot3d([3,u,v],u=0..4,v=0..25,axes=normal, grid=[9,6],color=blue, thickness=0): 
 CY:=spacecurve([3,v,9+(3-v)^2],v=0..4, color=black, thickness=2): 
 DY:=spacecurve([3,v,.5+9+(3-v)^2],v=0..4, color=black, thickness=2): 
 PY:=pointplot( {[3,2,10]}, color=black, symbol=circle): 
 LY:=spacecurve( [3,v,14-2*v], v=1..3, color=magenta, thickness=2): 
 display3d( {AY,BY,DY,PY,LY}, orientation=[45,50], tickmarks=[4,4,6] ); 
 
 > display3d( {BY,CY,PY,LY}, orientation=[0,90],view=0..15,tickmarks=[4,4,3]); 
 
 
 > AX:=plot3d(3*x+(x-y)^2,x=0..4,y=0..4,axes=normal, grid=[9,9], color=red): 
 BX:=plot3d([u,2,v],u=0..4,v=0..25,axes=normal, grid=[9,6],color=green, thickness=0): 
 CX:=spacecurve([u,2,3*u+(u-2)^2],u=0..4, color=black, thickness=2): 
 DX:=spacecurve([u,2,.6+3*u+(u-2)^2],u=0..4, color=black, thickness=2): 
 PX:=pointplot( {[3,2,10]}, color=black, symbol=circle): 
 LX:=spacecurve( [u,2,5*u-5], u=2..4, color=orange, thickness=2): 
 display3d( {AX,BX,DX,PX,LX}, orientation=[45,50], tickmarks=[4,4,3] ); 
 
 > display3d( {BX,CX,PX,LX}, orientation=[-90,90], view=0..15, tickmarks=[4,4,3]); 
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Maple commands to input a matrix of heights and then graph their surface and contours 
 
> with(plots); (then press  ENTER) Loads  routines which enable 3D graphics commands 
> with(linalg); (then press  ENTER) Loads  routines which enable matrix commands 
 

Defines a matrix of  z–values for a surface 
> surfmat2:=matrix( [ (press  RETURN) 
[3.0,2.8,2.6,2.4,2.2,1.8,1.5,1.2,1.0], (press  RETURN) 
[3.3,3.0,2.8,2.4,2.1,1.7,1.3,1.0,0.5], (press  RETURN) 
[3.4,3.2,3.0,2.5,2.0,1.5,1.0,0.5,0.0], (press  RETURN) 
[3.7,3.5,3.2,2.6,2.1,1.6,0.9,0.4,0.0], (press  RETURN) 
[4.0,3.8,3.6,2.7,2.2,1.7,0.8,0.2,0.0], (press  RETURN) 
[4.3,4.3,4.1,3.3,2.6,2.1,1.3,0.8,0.5], (press  RETURN) 
[4.7,4.8,4.9,4.0,3.0,2.4,1.8,1.4,1.0], (press  RETURN) 
[5.1,5.4,5.6,4.8,4.0,3.5,2.9,2.2,1.6], (press  RETURN) 
[5.2,5.7,6.1,5.3,4.5,4.3,3.5,2.8,1.9], (press  RETURN) 
[5.1,5.4,5.7,5.1,4.3,4.1,3.4,2.6,1.8], (press  RETURN) 
[4.7,4.8,5.0,4.6,4.2,3.5,2.7,2.1,1.5] (press  RETURN) 
]); (press  ENTER) 
 

Plots the contours 
> matrixplot(surfmat2, view=0..7, style=CONTOUR, axes=normal, orientation=[-90,0], 
contours=[0,.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6]); (press  ENTER) 
 

Plots the surface 
> matrixplot(surfmat2, view=0..7, style=HIDDEN, axes=normal, orientation=[65,45]);   (press  ENTER) 

 
Plots the surface and contours on one graph 

> A:=matrixplot(surfmat2, view=0..7, style=CONTOUR, axes=normal, 
contours=[0,.5,1,1.5,2,2.5,3,3.5,4,4.5,5,5.5,6], orientation=[65,45], color=black): (press  
RETURN) 
B:=matrixplot(surfmat2, view=0..7, style=HIDDEN, axes=normal):  (press  
RETURN) 
display3d( {A, B}, orientation=[65,45]);     (press  ENTER) 
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13.3 Selected Answers 
 
1. fx(1,2) = –8,  fy(1,2) = –4 2. fx(1,0) = –1/ 3    ,  fy(1,0) = 0  
 
3. fx(3, –1) = –27 4. 2  
 

5.  
∂z
∂x    = (x4 + 3x2y2 – 2xy3)/(x2 + y2)2,    

∂z
∂y   =  (y4 + 3x2y2 – 2x3y)/(x2 + y2)2    

 

6. ( 1/y ) – ( y/x2 ) 7. (y – z)/(x – y),  (x + z)/(x – y) 8. 

 

cos(x)
1! y "ez

,  

 

ez

1! y "ez
 

 

9. 

 

!z
!x

=
2xz

2yz " x2
 

 

!z
!y

=
2y + z2

x2 " 2yz
 11. y sec( xy ) + xy2 sec( xy )tan( xy )       

 
12. 0               13.  y + z, x + z, x + y 14. fx(x,y) = 3x2y5 – 4xy + 1,  fy(x,y) = 5x3y4 – 2x2      
 

15. fx(x,y) = 4x3 + 2xy2,   fy(x,y) = 2x2y + 4y3  16. fx(x,y) = 2y/(x + y)2,  fy(x,y) = –2x/(x + y)2   
 

17. fx =  ex { tan(x – y) + sec2(x – y) },  fy =  –ex sec2(x – y) 
 

18. fs =  –3s/ 2 – 3s2 – 5t2   ,  ft =  –5t/ 2 – 3s2 – 5t2     
 

19. fu =  v/(u2 + v2) ,   fv =  –u/(u2 + v2)   
 

20. gx =  2xy4 sec2( x2y3 )  ,  gy =  tan( x2y3 ) + 3x2y3 sec2( x2y3 ) 
 

21.  
∂z
∂x    =  1/ x2 + y2   ,   ∂z

∂y   =  y/(x2 + y2 + x x2 + y2  ) 
 

22. 
∂z
∂x    =  

3
2  cosh( 3x + 4y  ) / 3x + 4y   ,  ∂z

∂y   =  2 cosh( 3x + 4y  )/ 3x + 4y   
 

23. fx =  2xyz3 + y,  fy =  x2z3 + x,  fz =  3x2yz2 – 1  
 

24. fx =  yz xyz–1 ,  fy = z xyz ln(x)  ,  fz = y xyz ln(x)     
 

25. ux =  –yz cos( y/(x + z) )/(x + z)2  ,  uy =  z cos( y/(x + z) )/(x + z)  ,   

 uz =  sin( y/(x + z) ) – yz cos( y/(x + z) )/(x + z)2   
 

26. fx =  1/(z – t),  fy = –1/(z – t)  ,  fz = – (x – y)/(z – t)2   ,  ft =  (x – y)/(z – t)2   
 

31.  
∂z
∂x    =  f '(x) ,     

∂z
∂y   = g '(y)   32.  

∂z
∂x    =  f '(x + y),    

∂z
∂y   =  f '(x + y) 

 

33.  
∂z
∂x    =  f '( x/y ) ( 1/y ) ,     

∂z
∂y   = f '( x/y )( –x/y2  )    

 

34. fxx = 2y   ,  fxy =  2x + 1/(2 y  )  =  fyx    ,  fyy =  –x/( 4y y   ) 
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35. zxx = 3( 2x2 + y2)/ x2 + y2    ,  zxy =  3xy/ x2 + y2   =  zyx    ,  zyy =  3(x2 + 2y2)/ x2 + y2   


