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12.2 DERIVATIVES AND ANTIDERIVATIVES OF VECTOR–VALUED 
FUNCTIONS 

 

Derivatives of Vector–valued Functions 
 

The derivative of a vector–valued function is another vector–valued function, and this derivative is defined 

much like the derivative of a scalar function.  Derivatives of vector–valued functions are generally easy to 

compute, component–by–component, and they have a useful geometric interpretation as the vectors tangent 

to the graph of the vector–valued function. 

 
 
 Definition: The derivative of  r(t) = 〈 x(t), y(t), z(t) 〉 ,  

  denoted  
d

d t  r(t)   or  r'(t) , is 
 

  r'(t) = 

! 

lim
"t#0

r(t + "t) $ r(t)
"t

  =  〈 x '(t), y '(t), z '(t) 〉  

 
 provided the limit exists and is finite.  (Fig. 1) 
    
 
A vector–valued function  r(t)  is differentiable at a point  t = t0  if and only if each of its component 

functions is differentiable at t = t0,  and we can calculate the derivative  r'(t)   by calculating the three 

derivatives  x '(t), y '(t), and z '(t). 

 

Visualizing  r'(t):  If  r(t)  is the position of an object at time  t,  then 

the difference vector  r(t + ∆t) – r(t)   represents the change 

in position from  time  t  to time  t + ∆t  (Fig. 2), and  the 

ratio    
r(t + ∆t) – r(t)

∆t     is a vector measuring the average 

rate of change of position during the time interval from  t  to  

t + ∆t.  The limit  r'(t)   of this "average rate of change" 

vector has two useful geometric properties  (Fig. 3):   

 • r'(t)  is tangent to the graph of  r(t) ,  and  

 • the magnitude of  r'(t)  is the speed of  

  the object along the path at the time  t.   

  

 The vector  r'(t)  is called the velocity of  r (t)  . 

 The vector  | r'(t) |  is called the speed of  r (t)  . 
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 Definitions: Velocity, Speed, Direction, and Acceleration 
 
  If  r(t)  is the position of an object at time  t,  then 
 

  the velocity of the object is  v(t) =  
d

d t  r(t) =  r'(t)  (a vector tangent to r(t) ) , 
 
   the speed of the object is  | v(t) | (a scalar) , 
 

   the direction of travel is  T(t) =  
v(t)

| v(t) |   (the unit tangent vector)  , and 

 
  the acceleration is    a(t) =  v'(t)  =  r''(t) . 
    
 

Example 1: A ladybug is crawling up a helix so its position vector is  r(t) 

= 〈 cos(t), sin(t), t 〉  as shown in Fig. 4.  

(a) At the points labeled  A, B, and C  on the graph of   

 r(t) , estimate the sign  (positive or negative) of  

 each component of  r'(t).    
(b)  The values of  t  for the point  A, B, and  C  are   

 t = π/6, 3π/4 , and  7π/4  respectively.  Calculate   

 r'(t)  at the given values of  t  and compare the  

 results with your estimates in part (a). 
 

Solution: (a) At  A,  r'(t)  is  〈 x '(t), y '(t), z '(t) 〉 =  〈 –, +, + 〉 .  At B,  r'(t)  is  〈 –, –, + 〉  .  

  At C,  r'(t)  is  〈 +, +, + 〉  . 

 (b) r'(π/6)  is  〈 x '(π/6), y '(π/6), z '(π/6) 〉 =  〈 –sin(π/6), cos(π/6), 1 〉 ≈  〈 –0.5, 0.867, 1 〉 . 

  r'(3π/4)  is  〈 –sin(3π/4), cos(3π/4), 1 〉 ≈  〈 –0.707, –0.707, 1 〉 . 

  r'(7π/4)  is  〈 –sin(7π/4), cos(7π/4), 1 〉 ≈  〈 0.707, 0.707, 1 〉 . 
 

Practice 1: The position vector of an object at time  t  is  r(t) = 〈 t, t2, t3 〉 

as shown in Fig. 5.  Calculate the position, velocity, speed, direction, 

and acceleration of the object when  t = 0, 1, and 2. 

 

Angles of Intersection Between Space Curves 
 

The angle of intersection between two curves at a point in space is the angle 

between their tangent vectors (velocities) at that point of intersection, and the 

dot product of the tangent vectors can be used to find this angle. 
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Example 2: The parabolic path  r(t) = 〈 1, t, t2 〉  intersects the line   

 s(t) = 〈 –2 + 3t, 6 – 4t, 2 + 2t 〉  (Fig. 6)  at the point  (1, 2, 4).  

 Find the angle of intersection of the curves at that point. 

 
Solution: The parabola goes through  (1, 2, 4)  when  t = 2, and the line  

 goes through  (1, 2, 4)  when  t = 1.  Then  r'(2) = 〈 0, 1, 4 〉  and   

 s'(1) = 〈 3, –4, 2 〉 so   
 

 cos( θ ) = 
r'(2).s'(1)

| r'(2) | | s'(1) |    

 

    ≈  
4

17 29   ≈  0.180  and   

 
     and  θ ≈  1.390  ( or about 79.6o ). 
 

Practice 2: The parabolic paths  r(t) = 〈 0, t, t2 〉  and   

 s(t) = 〈 2 – t, 1, 5 – t2 〉  (Fig. 7) intersect at the point  (0, 1, 1).  

Find the angle of intersection of the curves at that point. 

 

Differentiation of Combinations of Vector–valued Functions 
 

For scalar functions we have patterns for differentiating sums, differences, products, and compositions, and 

there are similar rules for differentiating combinations of vector–valued functions.  In fact, the rules for 

vector–valued functions are almost identical to the corresponding rules for scalar function derivatives. 
 
 
 Differentiation Patterns for Vector–valued Functions 
 

 Constant: If  C  is a constant vector, then  
d

d t  C = 0 vector. 
 
 If  u(t)  and  v(t)  are differentiable vector–valued functions, k is a scalar number,  

 and  f(t) is a scalar function, then  
 

 Sum:  
d

d t ( u(t) + v(t) )  =  
d

d t  u(t)  +  
d

d t  v(t)  =  u'(t) + v'(t)  
 

 Difference: 
d

d t ( u(t) – v(t) )  =  
d

d t  u(t)  –  
d

d t  v(t)  =  u'(t) – v'(t)   
 

 Products:  
d

d t ( ku(t) )   =  k 
d

d t ( u(t) )   =  k u'(t)  
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  scalar 
d

d t ( f(t) u(t) )   =  f(t) 
d

d t ( u(t) )   +  
d f(t)

d t   u(t)  =  f(t) u'(t) + f '(t) u(t)  
 

  dot  
d

d t ( u(t)•v(t) )   =  u(t)• 
d v(t) 

d t     +  
d u(t) 

d t  •v(t)  =  u(t)•v'(t) + u'(t)•v(t)  
 

  cross 
d

d t ( u(t) x v(t) )   =  u(t) x v'(t)  + u'(t) x v(t)  
 
 

 Chain Rule: 
d

d t   u( f(t) ) =  f '(t) u'( f(t) )  
 
 
You should notice that all of the product differentiation patterns have the form 
 

(first function) "times" (derivative of the second) plus (derivative of the first) "times" (second) 
 
where the "times" is the appropriate type of multiplication, either scalar, dot, or cross. 
 

Proofs:  The proofs are very straightforward (componentwise) for the results for the derivatives of constant 

vectors, sums, differences and a scalar times a vector–valued function, and they are left for you. 
 

 The proofs given below for the product rules all follow the pattern of rewriting the original function as 

components, using our usual product rule or chain rule to differentiate the component functions, and 

then rewriting the results as the appropriate product of vectors.  
  

Scalar:  
d

d t ( f(t) u(t) )   =  〈   
d

d t  f(t)u1(t) , 
d

d t  f(t)u2(t) , 
d

d t  f(t)u3(t) 〉  
 
  =  〈 f(t)u1'(t) + f '(t)u1(t) ,  f(t)u2'(t) + f '(t)u2(t) ,  f(t)u3'(t) + f '(t)u3(t)  〉  
 
  =  〈 f(t)u1'(t) ,  f(t)u2'(t) ,  f(t)u3'(t)  〉 +    〈 f '(t)u1(t) ,  f '(t)u3(t) , f '(t)u3(t)  〉  
 
  =  f(t) 〈 u1'(t) ,  u2'(t) ,  u3'(t)  〉 +  f '(t) 〈 u1(t) ,  u2(t) , u3(t)  〉  
 
  =  f(t) u'(t) + f '(t) u(t) . 
 

Dot: 
d

d t ( u(t)•v(t) )   =  〈  
d

d t  u1(t)v1(t) ,  
d

d t  u2(t)v2(t) ,  
d

d t  u3(t)v3(t)  〉  
 
  =   〈  u1(t)v1'(t) + u1'(t)v1(t) ,  u2(t)v2'(t) + u2'(t)v2(t) ,  u3(t)v3'(t) + u3'(t)v3(t)  〉  
 
  =   〈  u1(t)v1'(t) ,  u2(t)v2'(t) ,  u3(t)v3'(t)  〉 +   〈  u1'(t)v1(t) ,  u2'(t)v2(t) ,  u3'(t)v3(t)  〉  
 
  =    u(t)•v'(t) + u'(t)•v(t) . 
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The pattern for the derivative of a cross product can also be proved by resorting to the definition of the 

cross product and showing that the components of   
d

d t ( u(t) x v(t) )    match the components of 

u(t) x v'(t)  + u'(t) x v(t), but the process is algebraically long and is omitted. 
 

Chain rule: 
d

d t  u( f(t) ) =  〈 
d

d t  u1( f(t) ) , 
d

d t  u2( f(t) ) , 
d

d t  u3( f(t) )   〉  
 
  =  〈 f '(t)u1'( f(t) ) , f '(t)u2'( f(t) ) , f '(t)u3'( f(t) )  〉  
 
  =  f '(t) 〈 u1'( f(t) ) , u2'( f(t) ) , u3'( f(t) )  〉 =  f '(t) u'( f(t) ) . 

 

These differentiation patterns simply provide alternate, and sometimes easier, ways to compute derivatives. 

Occasionally they are useful for deriving results about the behavior of vector–valued functions such as the 

one given in the next example. 
 

Example 3: Suppose a differentiable position vector  r(t) of an object has constant length so  | r(t) | = k  for 

all  t.  Show that the direction of travel of the object is always perpendicular to its position. 
 
Solution: r(t)•r(t) =  | r(t) |2 = k2  for all  t, so  r(t)•r(t)  is a constant  

so  
d

d t  r(t)•r(t) = 0. 
 
 But we also know that 

     
d

d t {r(t)•r(t)} = r(t)•r'(t) + r'(t)•r (t) = 2r(t)•r '(t) ,   

 so we can conclude that  r(t)•r'(t) = 0  for all t.   

 But  r(t)•r'(t) = 0 means that  r(t)  is perpendicular to  r'(t)  for all t, and that means the position, 

r(t), is always perpendicular to the velocity, r'(t).  The velocity vector  r'(t)  points in the direction 

of travel of the object so we have shown that the direction of travel of the object is always 

perpendicular to its position. 

 

The result in Example 3 also has straightforward physical interpretations.  If we are twirling someone 

around a central point (Fig. 8), we can take the central point to be the origin.   Then  the twirled person is 

always a constant distance from the central point  

and the magnitude of their  position vector is a 

constant.  The result of this example says that the 

twirled person's velocity vector is always 

perpendicular to their position vector.  If we let go 

of the person, their motion will be a straight line 

that is perpendicular to the circular path they were 

following  (Fig. 9).  An equivalent situation in three 
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dimensions is an object moving on the surface of a sphere (Fig. 10) 

such as the earth (almost).  If gravity is "turned off," this object will 

travel along a path perpendicular to the vector from the center of the 

earth to its position. 

 

 

Antiderivatives of Vector–valued Functions 
 

Since the derivative of a vector–valued function is defined to be the vector formed by the derivative of each 

of the component functions, the antiderivative of a vector–valued function is also defined component by 

component. 
 
 
 Definition: If r(t) = 〈 x(t), y(t), z(t) 〉, 
 
  then the antiderivative of  r(t)  is ⌡⌠  r(t) dt =  〈 ⌡⌠  x(t) dt , ⌡⌠  y(t) dt , ⌡⌠  z(t) dt 〉 

 
   provided that the antiderivatives of  x(t), y(t), and z(t) exist. 
 
 
 
Example 4: The velocity of an object is  v(t) = 〈 4t , –sin(t) , et 〉  and  its position at time  t = 0  is   

 r(0) = 〈 2, 3, 4 〉,   Find a formula for  r(t), its position at time  t. 
 
Solution: v(t) =  r'(t)  so   
 
 r(t) =  ⌡⌠ r'(t)  dt =  〈 ⌡⌠ 4t  dt , ⌡⌠  –sin(t) dt , ⌡⌠   et dt 〉  =  〈 2t2 + A, cos(t) + B, et + C 〉. 

 

 Then we can use the initial condition that  r(0) = 〈 2, 3, 4 〉, to determine that  A = 2, B = 2, and  

C = 3  so  r(t) =  〈 2t2 + 2, cos(t) + 2, et + 3 〉. 
 
Practice 3: The velocity of an object is  v(t) = 〈 6t2 , cos(t) , 12e3t 〉  and  its position at time  t = 0  is   

 r(0) = 〈 1, –5, 2 〉,   Find a formula for  r(t), its position at time  t. 
 

The inertial guidance system on an airplane uses antiderivatives of vector–valued functions to determine 

the location of the airplane.  The inertial guidance system starts with the initial location and velocity of the 

airplane and then uses lasers to measure the acceleration of the airplane in each of the x, y, and z directions 

several times per second.  From this acceleration (change in velocity) data, the computer in the system 

calculates the new velocity in each direction several times per second and then uses the velocities (changes 

in positions) to calculate the new position of the airplane relative to the starting position. 
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Example 5: Fig. 11 shows the initial acceleration, velocity and 

position of an object along the x–axis as well as its 

acceleration at 1 second time intervals.  Fill in the 

empty spaces in the table and determine the position of 

the object on the x–axis after 9 seconds. 
 

Solution: Acceleration is the  
change in velocity

change in time    =  

change in velocity
1 second     so each entry in the velocity column is 

the previous velocity plus the change in velocity 

(acceleration):   

  at t = 1, velocity = (previous velocity) + (change in   velocity) = 2 + 4 = 6 

  at t = 2, velocity = (previous velocity) + (change in velocity) = 6 + 6 = 12 

  at t = 3, velocity = (previous velocity) + (change in velocity) = 12 + 4 = 16. 

 The rest of the entries in the velocity column are calculated in 

the same way and the velocity values are shown in Fig. 12. 
 

 Velocity is  
 

     
change in position

change in time    =  
change in position

1 second     

 so each entry in the position column is the previous position 

value plus the change in position (velocity): 

  at t = 1, position = (previous position) + (change in  

   position) = 5 + 6 = 11 

  at t = 2, position = (previous position) + (change in  

   position) = 11 + 12 = 23 

  at t = 3, position = (previous position) + (change in  

   position) = 23 + 16 = 39. 

 The rest of the entries in the position column are calculated in 

the same way. 
 

Practice 4: Fig. 13 shows the initial acceleration, velocity and 

position of an object along the y–axis as well as its 

acceleration at 1 second time intervals.  Fill in the empty 

spaces in the table and determine the position of the object 

on the y–axis after 9 seconds? 

 
 

time   acceleration   velocity   position
 (sec)     (ft/sec  )      (ft/sec)       (ft)

0
1
2
3
4
5
6
7
8
9

0
4
6
4
2
8
6
0
0
0

2 5

Fig. 11
 

time   acceleration   velocity   position
 (sec)     (ft/sec  )      (ft/sec)       (ft)

0
1
2
3
4
5
6
7
8
9

0
4
6
4
2
8
6
0
0
0

2
6

12
16
18
26
32
32
32
32

5
11
23
39
57
83

115
147
179
211

Fig. 12
 

time   acceleration   velocity   position
 (sec)     (ft/sec  )      (ft/sec)       (ft)

0
1
2
3
4
5
6
7
8
9

0
4
6
8

–3
0
5

–2
1
0

2 5

Fig. 13
 



12.2  Derivatives and Antiderivatives of Vector–valued  Functions Contemporary Calculus 8 

PROBLEMS 
 

In problems 1 – 4, fill in each component of  r'  with  " + ", " – ", or " 0 ." 
 
1. For  r(t)  in Fig. 14,  r '(1) =  〈   ,    ,    〉 ,  r '(2) =  〈   ,    ,    〉 , and   
  r '(3) =  〈   ,    ,    〉 . 
 
2. For  r(t)  in Fig. 14,  r '(4) =  〈   ,    ,    〉 ,  r '(5) =  〈   ,    ,    〉 , and   
  r '(6) =  〈   ,    ,    〉 . 
 
3. For  r(t)  in Fig. 15,  r '(1) =  〈   ,    ,    〉 ,  r '(2) =  〈   ,    ,    〉 , and   
  r '(3) =  〈   ,    ,    〉 . 
 
4. For  r(t)  in Fig. 15,  r '(4) =  〈   ,    ,    〉 ,  r '(5) =  〈   ,    ,    〉 , and   
  r '(6) =  〈   ,    ,    〉 . 
 

In problems 5 – 8, the position vector  r(t)  is given for an object at  

time  t.  Calculate the velocity, speed, direction, and acceleration of  

the object at the given times. 
 

5. r(t) =  〈  t3 , 3 + 2t , t2 〉  and  t = 1 and 2.  
 

6. r(t) =  〈 5 + 3t2 ,  t  , t – t3 〉  and  t = 1 and 2. 7. r(t) = ( 2 – t )i  + ( 4/t )j + ( 3 )k  and  t = 1 and 2.  
 

8. r(t) = ( 2 – t3 )i  + ( 5t )j + ( 3 + t )k  and  t = 1 and 2. 
 

9. r(t) = 〈 t3 , 7 , 1 + 5t 〉.  Calculate  
d

d t  r( 2t ) . 10. r(t) = 〈 1/t , 6 + 5t , t3 〉.  Calculate   
d

d t  r( t2 ) . 
 

11. r(t) =  〈 t , 2t2 , 3t3 〉 .  Calculate   
d

d t  { sin(t) r( t ) } .  
 

12. r(t) =  〈 7 – t2 , 4 , t3 – t 〉 .  Calculate   
d

d t  { t3 r( t ) } . 
 

13. r(t) = ( 2 – 5t3 )i  + ( 7t )j + ( 1 + t )k  .  Calculate   
d

d t  r( 3t ) .  
 

14. r(t) = ( 1 – t2 )i  + ( 5t3 )j + ( 3 + 2t )k  .  Calculate   
d

d t  r( t3 )  . 
 

In problems 15 – 18, determine   
d

d t  { u + 2v },   
d

d t  { u.v }  , and   
d

d t  { u x v }  for the given vectors  

u(t)  and  v(t). 
 
15. u(t) = 〈 0, t, t3 〉  and  v(t) = 〈1 + 5t, 4 – t, 3〉. 16. u(t) = 〈4t, 1, 5 – t〉  and  v(t) = 〈t2, 2 + 3t, t〉  
 

17. u(t) = ( 5t3 )i  + ( 2 – 7t )j + ( t + 2 )k  and  v(t) = ( 1 – 2t )i  + ( 3t )j + ( 4 )k   
 

18. u(t) = ( 2t )i  + ( 4 )k   and  v(t) = ( 1 )i  + ( 2t )j + ( 3t2 )k  
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In problems 19 – 22, find the point and angle of intersection for the given curves. 
 
19. u(t) =  〈 3 – t , t , t2 〉  and  v(t) =  〈 0 , t , 9 〉   
 
20. u(t) =  〈 4 – t2 , t , t2 〉  and  v(t) =  〈 3 , t2 , t  〉  
 
21. u(t) = ( 5t2 )i  + ( 9 )j + ( 2 – t )k  and  v(s) = ( 2 + s )i  + ( 3s )j + ( 6 – s )k   
 
22. u(t) = ( 2 + t )i  + ( 7 – t )j + ( t + 4 )k  and  v(s) = ( 3s )i  + ( s + 1 )j + ( s3 )k  
 

23. The vectors  u(t) =  〈 0 , t , t2 〉  and  v(t) =  〈 t , 2t , 0 〉  form two sides of a parallelogram.  How fast is 

the area of the parallelogram changing when  t = 1.  When  t = 2? 
 

24. The vectors  r(t) =  〈 2t , 1 , 0 〉  and  s(t) =  〈 1 , 0 , 3 〉  form two sides of a parallelogram.  How fast is 

the area of the parallelogram changing when  t = 1.  When  t = 2? 
 

25. The vectors  u(t) =  〈 1 , t , 3 〉  and  v(t) =  〈 2t , 0 , 0 〉  form two sides of a triangle.  How fast is the 

area of the triangle changing when  t = 1.  When  t = 2? 
 

26. The vectors  r(t) =  〈 t2 , t , 1 〉  and  s(t) =  〈 t , t2 , 0 〉  form two sides of a triangle.  How fast is the area of 

the triangle changing when  t = 1.  When  t = 2? 
 

27. The vectors  u(t) =  〈 1 , 0 , 0 〉 , v(t) =  〈 1 , t , 0 〉 and  s(t) =  〈 0 , t , 3t 〉   form three sides of a 

tetrahedron.  (a)  How fast is the volume of the tetrahedron changing when  t = 1.  When  t = 2? 

 (b)  How fast is the surface area of the tetrahedron changing when  t = 1.  When  t = 2? 
 

28. The vectors  u(t) =  〈 2t , 0 , 0 〉 , v(t) =  〈 0 , 3t , 0 〉 and  s(t) =  〈 0 , 0 , 4t 〉   form three sides of a 

tetrahedron.  (a)  How fast is the volume of the tetrahedron changing when  t = 1.  When  t = 2? 

 (b)  How fast is the surface area of the tetrahedron changing when  t = 1.  When  t = 2? 
 
 
In problems 29 – 32, use the given information to find a formula for  r(t) . 
 
29. r '(t) =  〈 12t , 12t2 , 6et 〉  and  r(0) =  〈 1 , 2 , 3 〉 . 
 
30. r '(t) =  〈 3 + 4t , cos(t), 1 – 6t 〉  and  r(0) =  〈 7 , 2 , 5 〉 . 
 
31. r '(t) = ( 6t2 )i  + ( 4 )j + ( 8t – 5 )k  and  r(1) = 6i  + 2j – 3k . 
 
32. r '(t) = ( 5t2 )i  + ( 8t )j + ( 2 – t )k  and  r(2) = ( 3 )i  + ( 7 )j + ( 0 )k . 
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33. Fill in the rest of the  i  coordinate entries for  r   
 and  r '  in the table in Fig. 16. 
 
34. Fill in the rest of the  j  coordinate entries for  r   
 and  r '  in the table in Fig. 16. 
 
35. Fill in the rest of the  i  coordinate entries for  r   
 and  r '  in the table in Fig. 17. 
 
36. Fill in the rest of the  j  coordinate entries for  r   
 and  r '  in the table in Fig. 17. 
 
 
37. State and prove a differentiation rule  

 for  
d

d t ( 
u(t)
f(t)  )  . 

 
38. Prove that    

  
d

d t ( u(t) x v(t) )   =  – 
d

d t ( v(t) x u(t) )  . 

 

 

Practice Answers 
 

Practice 1: r(t) = 〈 t, t2, t3 〉 .  v(t) = velocity = r '(t) = 〈 1, 2t, 3t2 〉 so  

  v(0) = 〈 1, 0, 0 〉 ,  v(1) = 〈 1, 2, 3 〉 , v(2) = 〈 1, 4, 12 〉 . 

 sp(t) = speed = | v(t) |  so  sp(0) = 1,  sp(1) = 14   ,  sp(2) = 161   . 

 dir(t) = direction = 
v(t)

| v(t) |   .  dir(0) = 〈 1, 0, 0 〉 , dir(1) = 
1
14  〈 1, 2, 3 〉 ,  dir(2) = 

1
161  〈 1, 4, 12 〉 . 

 a(t) = acceleration = r ''(t) = 〈 0, 2, 6t 〉 so a(0) = 〈 0, 2, 0 〉 , a(1) = 〈 0, 2, 6 〉 , a(2) = 〈 0, 2, 12 〉 . 
 

Practice 2: The paths  r(t) = 〈 0, t, t2 〉  and  s(t) = 〈 2 – t, 1, 5 – t2 〉  intersect at r(1) = s(2) = (0,1,1). 

 r '(t) = 〈 0, 1, 2t 〉  and  s '(t) = 〈 –1, 0, –2t 〉   so  r '(1) = 〈 0, 1, 2 〉  and  s '(2) = 〈 –1, 0, –4 〉  . 

 cos( θ ) = 
r '(1) . s '(2)

| r '(1)| | s '(2) |   =  
–8

5 17   = –0.868  so  the angle between  r '(1)  and  s '(1)  is 

 θ  ≈ 2.922  (or  150.2o ) 
  

Practice 3: r '(t) = v(t) = 〈 6t2 , cos(t) , 12e3t 〉  so  r(t) = 〈 2t3 + A, sin(t) + B, 4e3t + C 〉  . 

 Since  r(0) = 〈 1, –5, 2 〉  = 〈 2(0)3 + A, sin(0) + B, 4e3(0) + C 〉  = 〈 A, B, 4 + C 〉 ,  we have 

 A = 1, B = –5, and  C = –2.  Then  r(t) = 〈 2t3 + 1, sin(t) – 5, 4e3t – 2 〉  . 
 

Practice 4: Velocity entries: 2, 6, 12, 20, 17, 17, 22, 20, 21, 21 

 Acceleration entries: 5, 11, 23, 43, 60, 77, 99, 119, 140, 161 

   t       r '' (t)           r ' (t)             r(t)

0

1

2

3

4

5

! 0, 2, 5 "

! 4, 1, 3 "

! 6, 0, 1 "

! 4, –2, 0 "

! 2, 0, 2 "

! 8, 3, 4 "

Fig. 16

!  0 ,  3 , 1 "

!     ,     , 7 "

!     ,     , 14 "

!     ,     , 21 "

!     ,     , 30 "

!     ,     , 43 "

!  1 , 2 , 3 "

!    ,    , 6 "

!    ,    , 7 "

!    ,    , 7 "

!    ,    , 9 "

!    ,    , 13 "

 

   t       r '' (t)           r ' (t)             r(t)

0

1

2

3

4

5

! 1, 2, 3 "

! 4, 2, 2 "

! 3, 1, 0 "

! 2, 3, 1 "

! 1, 4, 0 "

! 0, 1, 3 "

Fig. 17

!     ,    , 2 "

!     ,     , 8 "

! 30, 20 , 14 "

!     ,     , 21 "

!     ,     , 28 "

!     ,     , 38 "

!    ,   ,  4 "

!    ,    , 6 "

!  8 , 9 , 6 "

!    ,    , 7 "

!    ,    , 7 "

!    ,    , 10 "

 


