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12.1 VECTOR–VALUED FUNCTIONS AND  
 CURVES IN SPACE 
 

As a bug buzzes around a room (Fig. 1)  or a submarine explores the oceans  

or a planet orbits a moving star, we could describe the location  

of the bug or submarine or planet at any particular time as a point   

(x, y, z) in 3–dimensional space.  But to describe the object's movement  

we need the locations at many times, and that leads very naturally to the  

idea of representing the path of the object as a set of 

points  P(t) = ( x(t), y(t), z(t) )  given by parametric 

equations  x = x(t), y = y(t), and z = z(t)  where the 

variable  t  represents the parameter time.  Fig. 2 

shows the paths of  P(t) = ( 1 + t, 0 + 3t, 1 + 2t)  and   

Q(t) = ( cos(t), sin(t), t).  Such parametric equations 

and their graphs are fundamental to our study of 

motion in 3–dimensional space, but for many uses it is 

more effective to work with vectors rather than points, 

and that leads to vector–valued functions. 

 
 
 Definition: A vector–valued function is a rule that assigns a vector to each input number. 

  Typically, a vector–valued function has the form 

    r(t) = x(t)i + y(t)j + z(t)k = 〈 x(t), y(t), z(t) 〉   

  where x, y, and z are scalar–valued functions. 
 

  The domain of a vector–valued function  r(t)   is a set of real numbers: the domain of  r  consists    

    of those  t  in the domains of  x, y, and z. 

 The range of a vector–valued function is a collection of vectors. 
    
 

Vector–valued functions offer two advantages that should become clearer as you work with them.  First, 

vector–valued functions are often notationally simpler than parametric equations ––  it is easier to write  

r(t) than  ( x(t), y(t), z(t) ) .  This is not a big advantage; P(t)  is also easy to write, but the r(t) notation does 

make some ideas and computations easier.  The second advantage of vector–valued functions is that they 

allow us to use the powerful machinery we have already developed for working with vectors.  This vector 

machinery is particularly useful when we consider tangent vectors to curves and angles between curves. 
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Our discussion of vector–valued functions is similar to the discussion of functions of the form  y = f(x)  

in the early chapters.  We begin by considering their graphs and the ideas of limits and continuity for  

vector–valued functions. 

 
Graphs of Vector–Valued Functions  ––  Space Curves 
 
If an object is located at the point  P(t) = ( x(t), y(t), z(t) )  at time  t, then we say that   
 
 r(t) = x(t)i + y(t)j + z(t)k = 〈 x(t), y(t), z(t) 〉 , 
 

a vector from the origin to the point P(t),  is the object's position vector .  The 

functions x(t), y(t), and z(t)  are called the components of  r(t)  or the component 

functions of  r(t).   Fig. 3 shows a point  P(t)  and the position vector  r(t)  for that 

point.  It is difficult to draw and difficult to interpret a collection of vectors, so 

typically when we work with the graphs of vector–valued functions we draw only 

the path of the endpoints of the vectors:  the graph of  r(t) = 〈 x(t), y(t), z(t) 〉  is  

the collection of points  P(t) = ( x(t), y(t), z(t) ). 
 

The graphs of vector–valued functions can be very complex and difficult to 

sketch, for example Fig. 4,  but many are manageable "by hand" and you 

should practice sketching some of their graphs. 
 
 

Example 1: Sketch the graphs of  r(t) = 〈 3 – t, 2t, 4 – 2t 〉  for 0 ≤ t ≤ 3 ,  

and  s(t) = 〈 t, 0, sin(t) 〉  for  0 ≤ t ≤ 2π . 
 
Solution: The graphs are shown in Fig. 5. 
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Practice 1: Sketch the graphs of  r(t) = 〈 t, 4 – 2t, 2 – t 〉  for   0 ≤ t ≤ 2 ,  and  s(t) = 〈 t, t2, 1 〉  for  0 ≤ t ≤ 2 . 

 
 
Sometimes the component functions  x(t), y(t), and z(t)  may only be given as graphic information, but we  

can still sketch the graph of the vector–valued function they define. 
 

Example 2: The graphs of  x(t), y(t), and  

 z(t) are shown in Fig. 6.  Use this  

 information about the component functions  

 of  r(t) = x(t)i + y(t)j + z(t)k  

  = 〈 x(t), y(t), z(t) 〉   

 to sketch a graph of r(t). 
 
Solution: The graph of  r(t)  is shown in Fig. 7. 
 
Practice 2: The graphs of  x(t), y(t), and z(t) are shown in Fig. 8.  

  Use this information about the component functions of   

 r(t) = x(t)i + y(t)j + z(t)k = 〈 x(t), y(t), z(t) 〉  to sketch a graph of r(t). 

 

 

 
 
 
 
 

Limits and Continuity of Vector–Valued Functions 
 

Limits and continuity of vector–valued functions are defined in terms of the components of the function.  If 

you understand the meaning of limits and continuity for functions  y = f(x), then these concepts are not 

difficult for vector–valued functions. 
 
 
 Definition: For  r(t) = 〈 x(t), y(t), z(t) 〉, 
 
  

! 

lim
t"a

 r(t) =  〈 

! 

lim
t"a

 x(t) , 

! 

lim
t"a

 y(t) , 

! 

lim
t"a

 z(t) 〉   

 
 provided that each of the limits of the component functions exists. 
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To calculate the limit of a vector–valued function we simply need the limits of each of the component 

scalar–valued functions.  If any of the limits of the component functions fail to exist, we say that the limit 

of the vector–valued function does not exist.  The various properties of limits of vector–valued functions 

follow directly from the corresponding properties of scalar–valued functions as they are applied to each 

component separately.  
 
Example 3: Determine  

! 

lim
t"0

 r(t)   and  

! 

lim
t"#

  s(t)  for  r(t) =  〈 cos(t) , 4 + t   , 3e2t 〉    

 

 and  s(t) =  〈 
2t

t+3  , 
5
t    , 3 + 

sin(t)
2t   〉  

 
Solution: 

! 

lim
t"0

 r(t)   =  〈 

! 

lim
t"0

 cos(t) , 

! 

lim
t"0

 4 + t , 

! 

lim
t"0

 3e2t 〉 =  〈 1, 2, 3 〉   and   

 

 

! 

lim
t"#

 s(t)   =  〈 

! 

lim
t"#

 2t
t + 3

,  

! 

lim
t"#

 5
t
 , 

! 

lim
t"#

 3 + 
sin(t)

2t    〉 =  〈 2, 0, 3 〉    

 

Practice 3: Determine  

! 

lim
t"#

 r(t)   and  

! 

lim
t"#

 r(t)  for  r(t) =  〈 cos(t) , 
sin(t)

t    , 3 〉    

 

Continuity of vector–valued functions is stated in terms of limits, so the continuity of a vector–valued 

function depends on the continuity (and limits) of the component functions. 

 
 
 Definition: A vector–valued function  r(t) = 〈 x(t), y(t), z(t) 〉 is  
  continuous at the point  t = t0   
 
                    if     

! 

lim
t"t0

 r(t) =  r( t0 ) . 

 
 

The following result about continuity follows directly from the definition and is usually easier to use. 

 
 
 Component Continuity Theorem for Vector–valued Functions 
 
 A vector–valued function  r(t) = 〈 x(t), y(t), z(t) 〉 is continuous at the point  t = t0   

 if and only if  each of the component functions  x(t), y(t), and  z(t)  is continuous at  t = t0 .  
    
 
Proof: The proof follows directly from the definitions of continuity and limits of vector–valued functions. 

If  r(t) is continuous at t = t0 , then 

 
 

! 

lim
t"t0

 r(t) =  r( t0 ) =  〈 x( t0 ), y( t0 ), z( t0 ) 〉 . 

But, from the definition of limit of  r(t) , 

! 

lim
t"a

 r(t) =  〈 

! 

lim
t"a

 x(t) , 

! 

lim
t"a

 y(t) , 

! 

lim
t"a

 z(t) 〉 .   
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Two vectors are equal if and only if their respective components are equal, so  

 
 

! 

lim
t"t0

 x(t) = x( t0 ) , 

! 

lim
t"t0

 y(t) = y( t0 ) , and  

! 

lim
t"t0

 z(t) = z( t0 ) , 

and we have shown that  x, y, and  z  are continuous at   t = t0 . 

The proof that "if  x(t), y(t), and  z(t)  are continuous at   t = t0 , then  r(t) is continuous at t = t0"  is 

similar but starts with the assumption that  x, y, and  z  are continuous at   t = t0 . 
 

Example 4: Where are r(t) = 〈 cos(t), sin(t), t2 〉  and  s(t) = 〈 2 + t, 
1

t–3  , ln( t ) 〉  continuous? 
 

Solution:  (a)  r(t) = 〈 cos(t), sin(t), t2 〉  is continuous everywhere (for all t) since all of the component 

functions  x(t) = cos(t), y(t) = sin(t), and z(t) = t2  are continuous for all values of  t. 
 

 (b) s(t) = 〈 2 + t, 
1

t–3  , ln( t ) 〉  is continuous for  0 < t < 3  and  3 < t  since  x(t) = 2 + t is continuous for 

all values of t;  y(t) =  
1

t–3   is continuous for  t ≠ 3;  and  z(t) = ln(t)  is continuous for  t > 0.  
 
Practice 4: Where is  r(t) = 〈 1/t , et, INT( t ) 〉  continuous? 
 

Fig. 9 shows the graphs of continuous components  x(t) and y(t) and a discontinuous component z(t).  It also 

shows the discontinuous vector–valued function  r(t) = 〈 x(t) , y(t), z(t) 〉 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
Some Useful Space Curves:  Lines, Helix, and Bezier Curves 
 

By this point in your mathematical development, the graphs of some functions should be almost "automatic."  

You should be able to visualize the graphs of  y = x2, y = 3 + 2sin(x), y = | x–2 |  and a variety of others with 

little effort.  It is useful to start to develop similar skills with the graphs of a few  

vector–valued functions.  Lines and helices are useful shapes to begin with, and Bezier curves in three 

dimensions have a number of useful properties. 
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Lines 
 
If  r(t) = 〈 x(t), y(t), z(t) 〉, and each of the component functions  x(t), y(t),  and  z(t)  is a linear function   

(at + b), then the graph of  r(t)  is a straight line in space.  In this case we need only evaluate and plot  r(t) 

for a couple values of  t  before finishing the graph with a straightedge. 
 

Example 5: Sketch the graphs of  r(t) = 〈 2 + t, 3 – t, 1 + 2t 〉  and  s(t) = 〈 2, t, 3 〉  . 
 

Solution: r(0) = 〈 2, 3, 1 〉  and  r(1) = 〈 3, 2, 3 〉 .  Fig. 10 shows these two points and a graph of  r(t). 

  s(0) = 〈 2, 0, 3 〉  and  s(1) = 〈 2, 1, 3 〉 .  Fig. 11 shows these two points and a graph of  s(t). 

 

 

 

 

 
 
 
 
 
Practice 5: Sketch the graphs of  r(t) = 〈 t – 1, 0, 1 + 2t 〉  and  s(t) = 〈 2, 4, 3t 〉  . 
 
If  x(t), y(t),  and  z(t)  are linear functions, then they are continuous for all values of  t  so   

r(t) = 〈 x(t), y(t), z(t) 〉  is also continuous for all values of  t  (by the Component Continuity Theorem). 

 

The Helix  and Some Variations 
 

The graph of  r(t) = 〈 cos(t), sin(t), t 〉  is shown in Fig. 12, and it is called a   

helix, or a circular helix around the z–axis.  The parametric graph of    

( cos(t), sin(t) )   is a circle in the xy–plane (Fig. 13), and  z(t) = t  then "stretches" 

this circle into the  z  direction to create the spiral shape (Fig. 12).  The helix is 

sometimes useful, and it provides a focus to investigate the effects on the shape of  

the graph of certain changes in the component functions. 
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Example 6: (a)  Without plotting any points, describe the  

 shapes of the graphs of  r(t) = 〈 cos(t), t, sin(t) 〉   and   s(t) = 〈 cos(t), 2.sin(t), t 〉  .   

 (b)  Then sketch the graphs of  r(t) and  s(t). 

 

Solution: (a)  The graph of  r(t) = 〈 sin(t), t, cos(t) 〉  is a circular helix around the y–axis  (Fig. 14) 

 (b) The parametric graph of  ( cos(t), 2.sin(t) )  in the xy–plane is an ellipse  (Fig. 15a), so the 

graph of  s(t) = 〈 cos(t), 2.sin(t), t 〉  is an elliptical helix around the  z–axis  (Fig. 15b) 
 
 
 

 
Practice 6: (a)  Without plotting any points, describe the shapes of the 

graphs of  r(t) = 〈 t, cos(t), sin(t) 〉  and  s(t) = 〈 2.cos(t), t, 3.sin(t) 〉.  
(b)  Then sketch the graphs of  r(t) and  s(t). 

 
 
Figs. 16 and 17 show the graphs of two more variations on the component functions of the original helix. 
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Bezier Curves in Three Dimensions 
 

One powerful aspect of the Bezier curves we saw in Section 9.4.5 is that 

the ideas and even the formulas for these curves extend very easily to 

Bezier curves in three dimensions.  In Section  9.4.5  we saw that if we 
start with four points  P0 = (x0, y0), P1 = (x1, y1), P2 = (x2, y2), and  

P3 = (x3, y3)  then, for 0 ≤ t ≤ 1,  the curve given by   
 

 x(t) = (1–t)3.x0  + 3(1–t)2t.x1  + 3(1–t)t2.x2  + t3.x3    and   

 y(t) = (1–t)3.y0  + 3(1–t)2t.y1  + 3(1–t)t2.y2  + t3.y3     
 

( or more simply as  B(t) = (1–t)3.P0  + 3(1–t)2t.P1  + 3(1–t)t2.P2  + t3.P3    ) 
 
has several useful properties: 
 
 (1) B(0) = P0  and  B(1) = P3  so  P0  and  P3  are the  

  "endpoints" of  B(t) for 0 ≤ t ≤ 1. 
 

 (2) B(t) is a cubic polynomial so it is continuous and differentiable. 
 
 (3) B '(0) = slope of the line segment from P0 to P1:   

  B '(1) = slope of the line segment from P2 to P3 . 

 (4) For 0 ≤ t ≤ 1, the graph of  B(t) is in the region whose corners are the control points. 
 
A Bezier curve  B(t) for four given points  P0, P1, P2  and  P3  is shown in Fig.  18  . 
 
This extends very simply to three dimensions. 

 
 
 Bezier Curve in Three Dimensions 
 
 If  P0, P1, P2  and  P3 are four points in 3–dimensional space, then the Bezier curve in  

 three dimensions for those points is   
 

  B(t) = (1–t)3.P0  + 3(1–t)2t.P1  + 3(1–t)t2.P2  + t3.P3   for  0 ≤ t ≤ 1: 
 

 x(t) = (1–t)3.x0  + 3(1–t)2t.x1  + 3(1–t)t2.x2  + t3.x3 ,   

 y(t) = (1–t)3.y0  + 3(1–t)2t.y1  + 3(1–t)t2.y2  + t3.y3 ,  and  

 z(t) = (1–t)3.z0  + 3(1–t)2t.z1  + 3(1–t)t2.z2  + t3.z3  . 
    
 



12.1  Vector–valued Functions and Curves in Space Contemporary Calculus 9 

This  3–dimensional Bezier curve has the same properties as those listed for the 

2–dimensional Bezier curve with two modifications. 

 

(3') When t = 0  the direction of B(t) is the same as the direction of the  
 line segment from P0 to P1  

(Fig. 19): when  t = 1 the direction of B(t) is the same as the direction of the  
line segment from P2 to P3 . (We will define the "direction" of a space curve  

in Section 12.2, but it is similar to "slope" in two dimensions.) 
 

(4') For 0 ≤ t ≤ 1, the graph of  B(t) is "on  

 the rubber sheet" whose corners are the  

 control points (Fig. 20).  (This is not very 

 precise, but it should convey the idea 

 without the need for more technical vocabulary.) 
 
 
 
 
 
 
 
PROBLEMS 
 

In practice, most 3–dimensional graphs are created using computers.  The 

point of many of the following problems is to help develop your 3–

dimensional visualization skills. 

 

In problems 1 – 10, sketch the graph of each vector–valued function.  Many 

of these graphs lie on a coordinate plane so it is not difficult to sketch 

relatively good graphs by hand. 
 
1. Sketch  r(t) = 〈 t, t2, 0 〉  on the axes system in Fig. 21 for  0 ≤ t ≤ 2 . 
 
2. Sketch  s(t) = 〈 t, 0, t2 〉  on the axes system in Fig. 21 for  0 ≤ t ≤ 2 . 
 
 

3. Sketch  r(t) = 〈 0, t2, t 〉  on the axes  system in Fig. 22 for  0 ≤ t ≤ 2 . 

 

4. Sketch   s(t) = 〈 t, 2t, 0 〉  on the axes  system in Fig. 22 for  0 ≤ t ≤ 3 . 
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5. Sketch   r(t) = 〈 3t, 0, t 〉  on the axes  system in Fig. 23 for  0 ≤ t ≤ 3 . 

 

6. Sketch   s(t) = 〈 0, t, sin(t) 〉  on the axes system in Fig. 23 for  0 ≤ t ≤ 2π . 
 
 
 
 
 
 
 
 
 
 

7. Sketch   r(t) = 〈 0, sin(t), t 〉  on the axes system in Fig. 24 for  0 ≤ t ≤ 2π . 

 

8. Sketch   s(t) = 〈 cos(t), sin(t), 1 〉  on the axes system in Fig. 24 for  0 ≤ t ≤ 2π . 

 

 

 

 

 

 

 

9. Sketch   r(t) = 〈 2, sin(t), cos(t) 〉  on the axes system in Fig. 25 for  0 ≤ t ≤ 2π . 
 
10. Sketch   s(t) = 〈 0, sin(t), cos(t) 〉  on the axes system in Fig. 25 for  0 ≤ t ≤ 2π . 
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In problems 11 – 16, calculate and carefully plot three points on each 

vector–valued linear function and then complete the graph of the line. 
 
11. r(t) = 〈 2 – t, t, 1 + 2t 〉  in Fig. 26. 
  
12. s(t) = 〈 2 , t, 1 + 2t 〉  in Fig. 26. 
 
13. r(t) = 〈  t, 2, 3 〉  in Fig. 27. 
 
14. s(t) = 〈 1 , t, 3 〉  in Fig. 27. 
 
15. r(t) = 〈  t + 1, t – 2, 2t 〉  in Fig. 28. 
 
16. s(t) = 〈 1 + 2t , t, 3 〉  in Fig. 28. 

 

In problems 17 – 20, graphs are given for x(t), y(t), and z(t).  Use the 

information in these graphs to graph the vector–valued function     

r(t) = 〈 x(t), y(t), z(t) 〉 on the given coordinate system. 

 
17. The graphs of  x(t), y(t), and z(t) are in Fig. 29.  
 
18. The graphs of  x(t), y(t), and z(t) are in Fig. 30. 
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19. The graphs of  x(t), y(t), and z(t) are in Fig. 31. 20. The graphs of  x(t), y(t), and z(t) are in Fig. 32. 
In problems 21 – 28, calculate the limits. 

21.   

! 

lim
t"3

 〈 t , t
2

2   , 
1

t – 1   〉 . 22.   

! 

lim
t"0

 〈 cos(t) , 
t

3 – t  , t
2  〉 . 

 

23.   

! 

lim
t"2

 〈 4 , 
t

t – 2  , 7 + t   〉 . 24.  

! 

lim
t"2

 〈 t – 1  , t3 , 1  〉 . 

 

25.   

! 

lim
t"#

 〈 4
t + 1  , 

3t + 1
t – 2   , 

sin(t)
t    〉 . 26.  

! 

lim
t"#

 〈 5t2 + 2t + 1
t2 + t – 6

  , sin(t) , 
1

1 + t2
   〉 . 

 

27.   

! 

lim
t"#

 〈 arctan(t) , 
ln(t)

t   , 
3
t2

   〉 . 28.  

! 

lim
t"#

 〈 sin( arctan(t) ) , 1 , 51/t 〉 . 

 
In problems 29 – 36, determine where the given vector–valued functions are continuous. 
 

29.  r(t) =  〈 t , 
t2
2   , 

1
t – 1   〉 . 30.  s(t) =  〈 cos(t) , 

t
3 – t  , t

2  〉 . 
 

31.  u(t) =  〈 4 , 
t

t – 2  , 7 + t   〉 . 32.  v(t) =  〈 t – 1  , t3 , 1  〉 . 
 

33.  w(t) =  〈 
4

t + 1  , 
3t + 1
t – 2   , 

sin(t)
t    〉 . 34. r(t) =  〈 

5t2 + 2t + 1
t2 + t – 6

  , sin(t) , 
1

1 + t2
   〉 . 

 

35.  r(t) =  〈 arctan(t) , 
ln(t)

t   , 
3
t2

   〉 . 36.  s(t) =  〈 sin( arctan(t) ) , 1 , 51/t 〉 . 
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In problems 37 – 40, determine the Bezier curve  B(t) for the given control points P0, P1, P2  and  P3 .  If 

you have access to a computer with the appropriate software, graph  B(t). 
 
37. P0 = ( 0, 0,1 ), P1 = ( 1, 0, 1), P2 = ( 1, 2, 0),  and  P3 = ( 0, 2, 0) . 
 
38. P0 = ( 0, 0, 2), P1 = ( 1, 0, 1), P2 = ( 0, 2, 0),  and  P3 = ( 1, 3, 0) . 
 
39. P0 = ( 0, 1, 2), P1 = ( 0, 0, 2), P2 = ( 2, 1, 0),  and  P3 = ( 2, 0, 0) . 
 
40. P0 = ( 0, 1, 2), P1 = ( 0, 0, 2), P2 = ( 2, 0, 0),  and  P3 = ( 1, 1, 0). 
 
In problems 41 – 44, control points P0, P1, P2  and  P3 are shown  

on a graph.  For the given control points sketch a curve with the properties of 

the Bezier curve.  (In some graphs additional lines  

are included with the control points to help with your sketch.) 
 
41. P0, P1, P2  and  P3 are given in Fig. 33.  
 
42. P0, P1, P2  and  P3 are given in Fig. 34.  
 
43. P0, P1, P2  and  P3 are given in Fig. 35.  
 
44. P0, P1, P2  and  P3 are given in Fig. 36. 
 

 

In problems 45 – 48, graphs of vector–valued 

functions are given.  At the points labeled A, B, 

and C on each curve determine whether each 

variable function  x(t), y(t), and z(t) is increasing (I)   

or decreasing  (D)  and fill in the table for each function. 
 
45. r(t) = 〈 x(t), y(t), z(t) 〉  is given in Fig. 37. 46. s(t) = 〈 x(t), y(t), z(t) 〉  is given in Fig. 38. 
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47. u(t) = 〈 x(t), y(t), z(t) 〉  is given in Fig. 39. 48. v(t) = 〈 x(t), y(t), z(t) 〉  is given in Fig. 40. 

 

 
 

 
 
 
 
 
 

 
Practice Answers 
 

Practice 1: The graphs of  r(t) = 〈 t, 4 – 2t, 2 – t 〉   

 and  s(t) = 〈 t, t2, 1 〉  for  0 ≤ t ≤ 2 are 

  shown in Fig. 41. 
 

Practice 2: The graphs of  x(t), y(t), and z(t) are  

 shown in Fig. 42a, 42b, and 42c.  The graph of   

 r(t) = x(t)i + y(t)j + z(t)k = 〈 x(t), y(t), z(t) 〉  is shown in 

Fig. 42d . 

 

 

Practice 3: For  r(t) =  〈 cos(t) , 
sin(t)

t    , 3 〉,  lim
t∅π

  r(t) =  〈 –1 , 0 , 3 〉,  and  

! 

lim
t"#

 r(t)  does not exist 

because     

! 

lim
t"#

 cos(t)  does not exist. 

 

Practice 4: r(t) = 〈 1/t , et, INT( t ) 〉  is continuous everywhere except where  t is an integer since  

INT(t)  is not continuous where  t  is an integer.  1/t  is not continuous when  t = 0, but we 

have already excluded  t = 0 because  0  is an integer. 
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Practice 5: The graphs of  r(t) = 〈 t – 1, 0, 1 + 2t 〉  and  s(t) = 〈 2, 4, 3t 〉  are 

shown in Fig. 43 . 
 

Practice 6: The graph of   r(t) = 〈 t, cos(t), sin(t) 〉  is a circular helix around 

the x–axis.  This graph is shown in Fig. 44. 

 The graph of  s(t) = 〈 2.cos(t), t, 3. sin(t) 〉  is an elliptical helix 

around the y–axis.  This graph is shown in Fig. 45. 

 

 

 
 
 
 
 

 

 

 

Appendix:  MAPLE and graphs of vector–valued functions  ––  spacecurve( ) 
 

The computer language MAPLE has a number of commands for creating graphs of 3–dimensional objects 

including vector–valued functions.  In order to access these commands, we first need to load the "plots" package: 
 

with(plots);   (then press the <enter> key)      This loads the "plots" package and lists the new commands 

available for us to use. 
 
The command to create graphs of vector–valued functions is 
 

spacecurve( [ x(t), y(t), z(t) ] , t = a..b, options); 
 

where x(t), y(t), and z(t)  are formulas for the  x, y, and z  

coordinates, 

 a  and  b  are the starting and stopping values for the variable t 

 and  options includes commands for the type of axes, the color,  

 the thickness,  and the number of points to be plotted. 
 
For example, the command 
 

spacecurve( [t, sqrt(t), sin(t) ], t=0..2*Pi, axes=NORMAL, numpoints=200, color=red, thickness=3);   
 
creates the graph in Fig. M1. 

65
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Fig. M1

[ t, sqrt(t), sin(t) ]
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By positioning the cursor on the graph, a "hand" appears and, while holding 

down the mouse button, we can rotate the graph by slowing moving the mouse 

and then releasing the button.  Fig. M2  shows  

another view of the graph. 

 
 
Fig.  M3  shows three views created using the command 
 

spacecurve( [sin(t)*cos(25*t), t, sin(t)*sin(25*t) ], t=0..Pi, axes=NORMAL, numpoints=300);   
 

 
 


