11.7 Vector Reflections

Vectors were originally used in physics and engineering (forces, work, ...), but a very common use now is in computer graphics, and a single frame in an animated movie such as "Cars" may require working with hundreds of millions of vectors. Realistic lighting and surfaces require calculating what happens when a ray is reflected off of a mirror or shiny surface. We will start examining that situation in 2D (Fig. 1), a ray reflected off of a line or curve, and later extend it to 3D, a ray reflecting off of a
 surface. The Reflection Theorem illustrates a modern use of the projection vector.

Reflection Theorem:

If an incident vector ray \mathbf{V} is reflected off of a line L that has normal vector \mathbf{N}, then \quad the reflection vector is $\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}$. (Fig. 1)

Proof: The basis of the proof is very visual and geometric (Fig. 2). Put (i) $\mathbf{A}=$ $\operatorname{Proj}_{\mathbf{N}} \mathbf{V}$, (ii) $\mathbf{B}=-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}$, and (iii) $\mathbf{C}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}$. Then we can use geometry to justify that the vector \mathbf{C} in (iii) is the reflection vector we want.

Example 1: Find the reflection vector R when an incoming vector $\mathbf{V}=\langle-3,1\rangle$ is reflected by the line $3 x+2 y=12$ (Fig. 3). Then give parametric equations for the reflected line when the reflection occurs at the point $(2,3)$.

Solution: The line has normal vector $\mathbf{N}=\langle 3,2\rangle$ so

$$
\operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\frac{\mathbf{V} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}} \mathbf{N}=\frac{-7}{13}\langle 3,2\rangle=\left\langle\frac{-21}{13}, \frac{-14}{13}\right\rangle
$$

and the reflection vector is

$$
\begin{array}{r}
\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\langle-3,1\rangle-2\left\langle\frac{-21}{13}, \frac{-14}{13}\right\rangle \\
=\left\langle-3+\frac{42}{13}, 1+\frac{28}{13}\right\rangle=\left\langle\frac{3}{13}, \frac{41}{13}\right\rangle
\end{array}
$$

Fig. 3

One representation of the reflected line is $x(t)=2+\frac{3}{13} t, y(t)=3+\frac{41}{13} t$.

Fig. 2

Since this operation is done millions of times for each frame, it is important that the operation be simple and quick.

Practice 1: Find the reflection vector \mathbf{R} when an incoming vector $\mathbf{V}=\langle-1,-2\rangle$ is reflected by the line $-x+2 y=2$ (Fig. 4). Give parametric equations for the reflected line when the reflection occurs at the point ($1.5,1.75$).

We can also reflect off a curve at a point - just reflect off the tangent line to the curve at the point.

Example 2: Find the reflection vector R when an incoming vector $\mathbf{V}=\langle 3,-1\rangle$ is reflected by the ellipse $(2 \cos (t), \sin (t))$ at the point where $t=1.2$ on the ellipse (Fig. 5).

Solution: $\quad x^{\prime}(t)=-2 \sin (t)$ and $y^{\prime}(t)=\cos (t)$ so a tangent vector to the ellipse when $t=1.2$ is $\mathbf{T}=\langle-2 \sin (1.2), \cos (1.2)\rangle \approx\langle-1.864,0.362\rangle$ and then a normal vector is $\mathbf{N} \approx\langle 0.362,1.864\rangle$. Finally,

$$
\operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\frac{\mathbf{V} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}} \mathbf{N} \approx \frac{-0.77}{3.606}\{0.362,1.864\rangle=\langle-0.078,-0.402\rangle
$$

so $\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\langle 3,-1\rangle-2\langle-0.078,-0.402\rangle=\langle 3.156,-0.197\rangle$

Fig. 5

Practice 2: Find the reflection vector \mathbf{R} when an incoming vector $\mathbf{V}=\langle-1,2\rangle$ is reflected by the parabola $\left(t, t^{2}\right)$ at the point where $t=1.2$ on the parabola.

These ideas and computations extend very nicely to reflection vectors in 3D, and those reflections use the same formula: $\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}$. In the case of the reflection of a vector by a plane, we already know how to quickly find a normal vector to the plane so the reflection calculation is straightforward. To reflect off some other surface we will need a normal vector, and we will see how to find such a normal vector in Section 13.4.

Practice 3: Find the reflection vector \mathbf{R} when an incoming vector $\mathbf{V}=\langle 2,-3,-1\rangle$ is reflected by the plane $2 x-3 y+z=10$ at the point where $(5,1,3)$ on the plane.

Reflection Problems

For Problems $1-6$, (a) determine the reflection vector \mathbf{R} when an incoming vector \mathbf{V} is reflected by the given line, and (b) determine parametric equations for the reflected line when the reflection occurs at the given point.

1. The incoming vector $\mathbf{V}=\langle 2,-1\rangle$ is reflected by the line $3 x+y=6$ at the point $(1,3)$.
2. The incoming vector $\mathbf{V}=\langle-1,1\rangle$ is reflected by the line $3 x+y=6$ at the point $(1,3)$.
3. The incoming vector $\mathbf{V}=\langle 2,3\rangle$ is reflected by the line $5 x-2 y=7$ at the point $(3,4)$.
4. The incoming vector $\mathbf{V}=\langle 0,-2\rangle$ is reflected by the line $5 \mathrm{x}-2 \mathrm{y}=7$ at the point $(3,4)$.

Problems 5 and 6 can be easily done without the Reflection Theorem, but, of course, the theorem works.
5. The incoming vector $\mathbf{V}=\langle-3,2\rangle$ is reflected by the y-axis at the point $(0,3)$.
6. The incoming vector $\mathbf{V}=\langle 3,-1\rangle$ is reflected by the x -axis at the point $(2,0)$.

For Problems 7 -12, (a) determine the reflection vector \mathbf{R} when an incoming vector \mathbf{V} is reflected by the given curve, and (b) determine parametric equations for the reflected line when the reflection occurs at the given point.
7. The incoming vector $\mathbf{V}=\langle-3,1\rangle$ is reflected by the ellipse $(2 \cos (\mathrm{t}), \sin (\mathrm{t}))$ at the point where $\mathrm{t}=0.9$ on the ellipse.
8. The incoming vector $\mathbf{V}=\langle 2,1\rangle$ is reflected by the ellipse $(2 \cos (\mathrm{t}), \sin (\mathrm{t}))$ at the point where $\mathrm{t}=0.9$ on the ellipse.
9. The incoming vector $\mathbf{V}=\langle 2,1\rangle$ is reflected by the curve $\left(t^{2}, t^{3}\right)$ at the point where $\mathrm{t}=2$.
10. The incoming vector $\mathbf{V}=\langle-1,1\rangle$ is reflected by the curve $\left(t^{2}, t^{3}\right)$ at the point where $\mathrm{t}=2$.
11. The incoming vector $\mathbf{V}=\langle-1,1\rangle$ is reflected by the curve $y=x^{2}$ at the point $(2,4)$.
12. The incoming vector $\mathbf{V}=\langle 2,1\rangle$ is reflected by the curve $y=x^{2}$ at the point $(2,4)$.

For Problems $13-16$, (a) determine the reflection vector R when an incoming vector V is reflected by the given plane, and (b) determine parametric equations for the reflected line when the reflection occurs at the given point.
13. The incoming vector $\mathrm{V}=\langle 2,6,3\rangle$ is reflected by the plane $\mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=13$ at the point $(2,4,1)$.
14. The incoming vector $\mathrm{V}=\langle 4,1,3\rangle$ is reflected by the plane $3 \mathrm{x}-2 \mathrm{y}+4 \mathrm{z}=5$ at the point $(1,3,2)$.
15. The incoming vector $\mathrm{V}=\langle 3,2,1\rangle$ is reflected by the plane $\mathrm{x}=0$ at the point $(0,4,2)$.
16. The incoming vector $\mathrm{V}=\langle 2,-3,-1\rangle$ is reflected by the plane $\mathrm{z}=0$ at the point $(3,4,0)$.

Practice Answers

Practice 1: The line has normal vector $\mathbf{N}=\langle-1,2\rangle \quad$ so $\quad \operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\frac{\mathbf{V} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}} \mathbf{N} \approx \frac{-3}{5}\langle-1,2\rangle=\left\langle\frac{3}{5}, \frac{-6}{5}\right\rangle$
and the reflection vector is $\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\langle-1,-2\rangle-2\left\langle\frac{3}{5}, \frac{-6}{5}\right\rangle=\left\langle\frac{-11}{5}, \frac{2}{5}\right\rangle$.
The reflected line is $\mathrm{x}(\mathrm{t})=1.5-\frac{11}{5} \mathrm{t}, \mathrm{y}(\mathrm{t})=1.75+\frac{2}{5} \mathrm{t}$.

Practice 2: $\quad \mathrm{x}^{\prime}(\mathrm{t})=1$ and $\mathrm{y}^{\prime}(\mathrm{t})=2 \mathrm{t}$ so a tangent vector to the parabola when $\mathrm{t}=1.2$ is $\mathbf{T}=\langle 1,2.4\rangle$ and then a normal vector is $\mathbf{N} \approx\langle-2.4,1\rangle$. Finally, $\operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\frac{\mathbf{V} \cdot \mathbf{N}}{\mathbf{N} \cdot \mathbf{N}} \mathbf{N} \approx \frac{4.4}{6.76}\langle-2.4,1\rangle=\langle-1.56,0.65\rangle$
so $\mathbf{R}=\mathbf{V}-2 \cdot \operatorname{Proj}_{\mathbf{N}} \mathbf{V}=\langle-1,2\rangle-2\langle-1.56,0.65\rangle=\langle 2.12,0.7\rangle$ $y(t)=0.783-2.099 t$.

Related web sites:
Ray tracing in Wikipedia - a nice overview http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Just look at the pictures in this one (about movie "Cars" from Pixar) http://graphics.pixar.com/library/RayTracingCars/paper.pdf
"Rendering this image used 111 million diffuse rays, 37 million specular rays, and 26 million shadow rays. The rays cause $\mathbf{1 . 2}$ billion ray-triangle intersection tests. With multiresolution geometry caching, the render time is 106 minutes."

