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11.5 CROSS PRODUCT 
 
This section is the final one about the arithmetic of vectors, and it introduces a second type of vector–vector  

multiplication called the cross product.  The material in this section and the previous sections is the 

foundation for the next several chapters on the calculus of vector–valued functions and functions of several 

variables, and all of the vector arithmetic is used extensively. 
 

The dot product of two vectors results in a scalar, a number related to the magnitudes of the two original 

vectors and to the angle between them, and the dot product is defined for two vectors in 2–dimensional,  

3–dimension, and higher dimensional spaces.  The cross product of a vector and a vector differs from the 

dot product in several significant ways: the cross product is only defined for two vectors in 3–dimensional 

space, and the cross product of two vectors is a vector.  At first, the definition of the cross product given 

below may seem strange, but the resulting vector has some very useful properties as well as some unusual 

ones.  The torque wrench described next illustrates some of the properties we get with the cross product. 
 

Torque wrench: As you pull down on the torque wrench in Fig. 1, a force 

is applied to the bolt that twists it into the wall.  This "twisting" force is 

the result of two vectors, the length and a direction of the wrench  A  and 

the magnitude and direction of the pulling force  B .  To model this 

"twisting into the wall" result of  A  and  B, we want a vector  C  that 

points into the wall and depends on the magnitudes of  A  and  B  as well 

as on the angle between the wrench and the direction of the pull. 
 

If the pull is downward  (Fig. 1), we want  C  to point  

  into the page. 

If the pull is upward  (Fig. 2), we want  C  to point out of the page. 
 
If the angle between  A  and  B  is close to ±90o (Fig. 3), we want the magnitude  

  of  C  to be large. 

If the angle between  A  and  B  is small (Fig. 4), we want the magnitude  

  of  C  to be small. 
 
There is a way to combine the vectors  A  and  B  to produce a vector  C with the  

properties that model the torque wrench.  This vector  C,  called the cross product 

of  A  and  B, also turns out to be very useful when we discuss planes through 

given points and tangent planes to surfaces.  It is not at all obvious from the 

definition given below for the cross product that the cross product has a 

relationship to torque wrenches, planes, or anything else of interest or use to us, 

but it does and we will investigate those applied and geometric properties.  Try not 

to be repelled by the unusual definition ––  it leads to some lovely results. 
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 Definition of the Cross Product (Vector Product): 
 
  For  A = 〈 a1, a2, a3 〉 and   B = 〈 b1, b2, b3 〉 , the cross product  of  A  and  B  is 
 
  A x B =  (a2b3 – a3b2)i + (a3b1 – a1b3)j + (a1b2 – a2b1)k , a vector. 
    
 
The symbols  "A x B"  are read  "A  cross  B." 

Many people find it difficult to remember a complicated formula like the definition of the cross product.  

Fortunately, there is an easy way to do so, but it requires a digression into the calculation of determinants. 

 
Determinants 
 

Determinants appear in a number of areas of mathematics, and you may have already seen them as part of 

Cramer's Rule for solving systems of equations.  Here we only need them as a device for making it easier to 

remember and calculate and use the cross product. 
 

Definition of the 2x2 ("two by two") Determinant:    The determinant     ⎪
⎪

⎪
⎪a b

c d    =  ad – bc . 

 
Some people prefer to remember the visual pattern in Fig. 5. 

 

Example 1: Evaluate the determinants:  ⎪
⎪

⎪
⎪1 4

3 5   , 

⎪
⎪

⎪
⎪x y

–2 3   , and  ⎪
⎪

⎪
⎪i j

0 4   . 

 

Solution: ⎪
⎪

⎪
⎪1 4

3 5    = (1)(5) – (4)(3) = 5 – 12 = –7.   

 ⎪
⎪

⎪
⎪x y

–2 3   = (x)(3) – (y)(–2) = 3x + 2y . 

 

 ⎪
⎪

⎪
⎪i j

0 4    = (i)(4) – (j)(0) =  4i  . 
 

Practice 1: Evaluate the determinants:  ⎪
⎪

⎪
⎪–3 4

5 6   , ⎪
⎪

⎪
⎪x y

0 –3   , and  ⎪
⎪

⎪
⎪i j

–4 3   . 

 

A  3x3 determinant can be defined in terms of several  2x2 determinants. 

 

Definition of the 3x3 Determinant:  
⎪
⎪
⎪

⎪
⎪
⎪

a1 a2 a3

b1 b2 b3

c1 c2 c3

  =  a1⎪⎪
⎪

⎪⎪
⎪b2 b3

c2 c3
   –  a2⎪⎪

⎪
⎪⎪
⎪b1 b3

c1 c3
   +  a3⎪⎪

⎪
⎪⎪
⎪b1 b2

c1 c2   . 

+ –
a b

c d
=

a b

c d

adbc

= ad – bc

Fig. 5:  Pattern for a 2x2 determinant
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Many people prefer to remember the visual pattern in Fig. 6. 
 

 

In the 3x3 definition, the first 2x2 determinant,  ⎪⎪
⎪

⎪⎪
⎪b2 b3

c2 c3
 , is the part of the original 3x3  table after the 

first row and the first column have been removed, the row and column containing  a1 .   The second  2x2 

determinant  ⎪⎪
⎪

⎪⎪
⎪b1 b3

c1 c3
   is what remains of the original table after the first row and the second column 

have been removed, the row and column containing  a2 .  The third  2x2 determinant  ⎪⎪
⎪

⎪⎪
⎪b1 b2

c1 c2
   is what 

remains of the original table after the first row and the third column have been removed, the row and 
column containing  a3 .   (Note:  The leading signs attached to the three terms alternate:  +  –  +.) 
 

Example 2: Evaluate the determinants   
⎪⎪
⎪⎪

⎪⎪
⎪⎪

2 3 5
0 –4 1

–3 4 0
   and  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

3 4 1
0 –2 5

   . 

 

Solution: 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

2 3 5
0 –4 1

–3 4 0
   =  (2) ⎪

⎪
⎪
⎪–4 1

4 0   – (3) ⎪
⎪

⎪
⎪0 1

–3 0   + (5) ⎪
⎪

⎪
⎪0 –4

–3 4   = (2)(–4) – (3)(3) + (5)(–12) = –77. 

 

 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

3 4 1
0 –2 5

  = i ⎪
⎪

⎪
⎪4 1

–2 5   – j ⎪
⎪

⎪
⎪3 1

0 5   + k ⎪
⎪

⎪
⎪3 4

0 –2   = +22i  – 15j + (–6)k . 

 

Practice 2: Evaluate the determinants   
⎪⎪
⎪⎪

⎪⎪
⎪⎪

3 5 0
1 4 –1

–2 0 6
   and  

⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

2 –1 3
4 0 5

   . 

 

b21b

a 1 a2

c21c

b3

a3

c3

=

– +

b21b

a 1 a2

c21c

b3

a3

c3

+ – +

b21b

a 1 a2

c21c

b3

a3

c3

+– +

b21b

a 1 a2

c21c

b3

a3

c3

+

a 1

b2

c2

b3

c3

+= a 2

b1

c1

b3

c3

– a 3

b1

c1

b2

c2

+

+–

Fig. 6:  Pattern for a 3x3 determinant
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The original definition of the cross product can now be rewritten using the determinant notation. 
 
 
 Determinant Form of the Cross Product Definition:   
 

  For  A = 〈 a1, a2, a3 〉 and   B = 〈 b1, b2, b3 〉 ,  A x B =  
⎪
⎪
⎪

⎪
⎪
⎪i j k

a1 a2 a3

b1 b2 b3

 . 

    
 
The second determinant in Example 2  represents the cross product  A x B  for  A = 〈 3, 4, 1 〉  and   
B = 〈 0, –2, 5 〉 , and the second determinant in Practice 2 is the cross product  A x B  for  A = 〈 2, –1, 3 〉  
and  B = 〈 4, 0, 5 〉 . 
 

The cross products of various pairs of the basis vectors i, j, and k  are relatively easy to evaluate, and they 

begin to illustrate some of the properties of cross products. 
 

Example 3: Use the determinant form of the definition of the cross product to evaluate   

 (a)  i x j , (b) j x i ,  and  (c)  i x i . 
 

Solution:  i x j = 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

1 0 0
0 1 0

  =  i ⎪
⎪

⎪
⎪0 0

1 0   – j ⎪
⎪

⎪
⎪1 0

0 0   + k ⎪
⎪

⎪
⎪1 0

0 1   = 0i + 0j + 1k = k . 

 

 j x i = 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

0 1 0
1 0 0

  =  i ⎪
⎪

⎪
⎪1 0

0 0   – j ⎪
⎪

⎪
⎪0 0

1 0   + k ⎪
⎪

⎪
⎪0 1

1 0   = 0i + 0j + (–1)k = –k . 

 

 i x i = 
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

1 0 0
1 0 0

  =  i ⎪
⎪

⎪
⎪0 0

0 0   – j ⎪
⎪

⎪
⎪1 0

1 0   + k ⎪
⎪

⎪
⎪1 0

1 0   = 0i + 0j + 0k = 0 . 

 You should note that  i x j = k  is perpendicular to the vectors  i  and  j  and the xy–plane. 

 Similarly,  j x i = –k  is also perpendicular to  i  and  j  and the xy–plane. 
 

Practice 3: Use the determinant form of the definition of the cross product to evaluate   

 (a)  j x k , (b) k x j ,  and  (c)  j x j . 
 

 The cross products of pairs of basis vectors follow a simple  

pattern given below and in Fig. 7. 
 

i x j = k j x i = –k i x i = 0 

j x k = i k x j = – i j x j = 0 
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k x i = j i x k = –j k x k = 0 
Example 4: Evaluate  A x B   for  A = 〈 2, –3, 0 〉  and  B = 〈 3, 1, –4 〉 . 
 

Solution: A x B  =  
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪i j k

2 –3 0
3 1 –4

  =  i ⎪
⎪

⎪
⎪–3 0

1 –4   – j ⎪
⎪

⎪
⎪2 0

3 –4   + k ⎪
⎪

⎪
⎪2 –3

3 1   = 12i  + 8j + 11k . 

 
Practice 4: Evaluate  A x B   for  A = 〈 3, 0, –5 〉  and  B = 〈 –2, 4, 1 〉 . 
 
 
 Properties of the Cross Product: (a) 0 x A = A x 0 = 0 

  (b) A x A =  0   

  (c) A x B = – B x A 

  (d) k(A x B) = kA x B = A x kB   

  (e) A x (B + C) = (A x B) + (A x C) 
    
 

The proofs of all of these properties are straightforward applications of the definition of the cross product 

as is illustrated below for part (c).  Proofs of  (a) and (b) are given in the Appendix after the Practice 

Answers, and the proofs of (d) and (e) are left as exercises. 
 
Proof of (c):  If  A = 〈 a1, a2, a3 〉 and   B = 〈 b1, b2, b3 〉 , then   
 

 B x A = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

b1 b2 b3

a1 a2 a3

  =   i ⎪⎪
⎪

⎪⎪
⎪b2 b3

a2 a3
   – j ⎪⎪

⎪
⎪⎪
⎪b1 b3

a1 a3
  + k ⎪⎪

⎪
⎪⎪
⎪b1 b2

a1 a2
    

 
 = i (a3b2 – a2b3)  – j (a3b1 – a1b3) + k (a2b1 – a1b2) . 
 

 A x B = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

a1 a2 a3

b1 b2 b3

  =   i ⎪⎪
⎪

⎪⎪
⎪a2 a3

b2 b3
   – j ⎪⎪

⎪
⎪⎪
⎪a1 a3

b1 b3
  + k ⎪⎪

⎪
⎪⎪
⎪a1 a2

b1 b2
    

 
 = i (a2b3 – a3b2)  – j (a1b3 – a3b1) + k (a1b2 – a2b1) =  – B x A . 
 

A vector has both a direction and a magnitude, and the direction and magnitude of the vector  A x B  each give us 

useful information:  the direction of  A x B  is perpendicular to A  and  B, and the magnitude of  A x B  is the area 

of the parallelogram with sides  A  and  B.  These are the two properties of the cross product that get used most 

often in the later chapters, and they enable us to visualize  A x B . 
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 The direction property of  A x B:  
 
  A•(A x B) = 0  and  B•(A x B) = 0   
 
  so  A x B  is perpendicular to  A  and  to  B .  (Fig. 8) 
    

 
 
Proof: A•(A x B)  =  〈 a1, a2, a3 〉 • 〈 a2b3 – a3b2, a3b1 – a1b3, a1b2 – a2b1 〉  

 
  =  a1a2b3 – a1a3b2   +    a2a3b1 – a2a1b3   +    a3a1b2 – a3a2b1   =  0 . 
 
The proof that  B•(A x B)  = 0  is similar . 
 
 
 The magnitude property of  A x B:   
 
 If   A  and  B  are nonzero vectors with angle  θ   

  between them  (0 ≤ θ ≤ π), 
 
 then | A x B |  =  |A||B| |sin(θ)|  
 
   =  area of the parallelogram formed  

    by the vectors  A  and  B.  (Fig. 9) 
    
 
The proof that  | A x B | = |A||B| |sin(θ)|  is algebraically complicated and is given in the Appendix after  

the Practice Answers.  These properties of the direction and magnitude are sometimes used to define the 

cross product, and then the algebraic definition is derived from them. 
 
 
 Corollary to the magnitude property of  A x B: 
 

 The area of the triangle formed by the vectors  A  and  B  is  
1
2  | A x B |   . 

    
 

Visualizing the cross product:  The cross product  A x B  is perpendicular to both  A  and  B and 

satisfies a "right hand rule" so we can visualize the direction of  A x B  using, of course, your right hand. 

If  A  and B   are the indicated fingers (Fig. 10 and Fig. 11))   then your extended 

right thumb points in the direction of   A x B.   

 

The relative length of A x B  can be estimated 

from the magnitude property of   

A x B :  | A x B |  =  parallelogram area. 
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Example 5: Fig.  12  shows two pairs of vectors  A  and  

B.  For each pair sketch the direction of  A x B .  For which 

pair is  | A x B | larger? 

 

Solution: See Fig. 13.  | A x B | is larger for  (b)  since the  

 area of their parallelogram is larger in  (b). 
 

Practice 5: Fig.  14  shows two pairs of vectors  A  and  B.   

 For each pair sketch the direction of  A x B .  For which pair  

 is  | A x B | larger? 

 

 

 
 
Torque Wrench Revisited 
 

Now we can use the ideas and properties of the cross 

product to analyze the original torque wrench problem. 

 
 

 Definition:  The torque vector produced by a lever arm vector  A  and a force vector  B  is  A x B . 

 

The direction of the torque vector tells us whether the wrench is driving the bolt into the wall or pulling it 

out of the wall.  The magnitude of the torque vector describes the strength of the tendency of the wrench to 

drive the bolt in or pull it out. 
 

Example 6: Fig. 15 shows two force 

vectors acting at the end of a 10 inch 

wrench.  Which vector produces the 

larger torque? 
 
Solution: |B| = 50 pounds  with  θ = 30°  so   
 
 | A x B | = |A||B| |sin(θ)|  
 
  = (10 inches)(50 pounds) |sin(30°)| ≈  250 pound–inches of force. 
 
 |C| = 50 pounds with  θ = 100°  so 
 
 | A x C | = |A||C| |sin(θ)| = (10 inches)(50 pounds)| sin(100°) | ≈  492.4 pound–inches of force. 
 
 Vector  C  produces the larger torque:  the smaller force, used intelligently, produced the larger result. 
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Practice 6: In Fig. 16 which force vector  

 produces the larger torque? 

 
 
 
 
The Triple Scalar Product  A•(B x C)   
 

The combination of the dot and cross products, A•(B x C) ,  for the 

three vectors  A, B, and C  in 3–dimensional space is called  

the triple scalar product because the result of these operations is  

a scalar:A•(B x C) = A•( vector ) = scalar.  And the magnitude  

of this scalar has a nice geometric meaning. 

 
 
 Geometric meaning of  | A•(B x C) | 
 
  For the vectors  A, B, and  C  in 3–dimensional space (Fig.17) 
 
  | A•(B x C) |  = volume of the parallelepiped (box) with  sides  A, B, and  C . 
    
 
Proof: From the definition of the dot product,  

 A•(B x C)  = | B x C | |A| cos(θ)  so 

  | A•(B x C) |  = | B x C | |A| |cos(θ)| .   
 
 Volume = (area of the base)(height),   

 and the area of the base of the box is | B x C | .   

 Since  B x C  is perpendicular to the base, the height  h  is the 

projection of  A  onto  B x C  (Fig. 18):   h = |A| | cos(θ) |. 

 Then  Volume = | B x C| |A| | cos(θ) |  which we showed was  

  equal to  | A•(B x C) | . 
 

Problem  46 asks you to show that the triple scalar product can be calculated as a 3x3 determinant. 
 

Beyond Three Dimensions 
 

The objects we examined in previous sections  (points, distances, vectors, dot products, angles between vectors, 

projections)  all had rather nice extensions to more than three dimensions.  The cross product is different:  the 

cross product  A x B  we have defined requires that  A  and  B  be 3–dimensional vectors, and there is no easy 

extension to vectors in more than three dimensions that preserves the properties of the cross product.   
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PROBLEMS 
 
In problems 1 – 12, evaluate the determinants. 
 

1. ⎪
⎪

⎪
⎪3 4

2 5    2. ⎪
⎪

⎪
⎪4 –1

3 1    3. ⎪
⎪

⎪
⎪x 5

y 2    4. ⎪
⎪

⎪
⎪5 a

b 3     

 

5. ⎪
⎪

⎪
⎪1 0

0 1    6. ⎪
⎪

⎪
⎪0 1

1 0    7. 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

1 3 2
0 5 2
1 1 0

   8. 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

2 3 0
1 –3 2

–1 0 4
   

 

9. 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

x y z
1 2 3
3 1 2

   10. 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

a b c
0 3 5
2 1 3

   11. 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

2 3 5
0 –4 1

–3 4 0
   12. 

⎪⎪
⎪⎪

⎪⎪
⎪⎪

x 0 0
0 3 0
0 0 1–x

   

 
In problems 13 – 18, vectors  A  and  B  are given.  Calculate  (a)  A x B ,  (b)  (A x B).A,   
(c)  (A x B).B ,  and  (d)  | A x B | . 
 
13. A = 〈 3, 4, 5 〉  , B = 〈 –1, 2, 0 〉   14. A = 〈 –2, 2, 2 〉  , B = 〈 3, 1, 2 〉   
 
15. A = 〈 1, –3, 2 〉  , B = 〈 –2, 6, 4 〉   16. A = 〈 6, 8, –2 〉  , B = 〈 3, 4, –1 〉  
 
17. A = 3i – 1j + 4k ,  B = 1i – 2j + 5k  18. A = 4i – 1j + 0k ,  B = 3i – 2j + 0k  

 
In problems 19 – 22, state whether the result of the given calculation is a vector, a scalar, or is not defined. 
 
19. A•(B x C) 20. A x (B•C) 21. (A•B) x (A•C) 22. A(B x C) 
 
23. Prove property  (d)  of the Properties of the Cross Product:  k(A x B) = kA x B = A x kB . 
 
24. Prove property  (e)  of the Properties of the Cross Product:  A x (B + C) = (A x B) + (A x C) . 
 
25. Explain geometrically why  A x A = 0 . 
 
26. If  |A|  and  |B|  are fixed, what angle(s) between  A  and  B  maximizes  | A x B | ?  Why? 
 
In problems 27 – 30, vectors A and B are given graphically.  Sketch  A x B . 
 
27. See Fig. 19. 28. See Fig. 20. 29. See Fig. 21. 30. See Fig. 22. 
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31. (a)  Calculate the torque produced by the  

       wrench and force shown in Fig. 23. 
 
 (b)  Calculate the torque produced by the  

       wrench and force shown in Fig. 24. 
 

32. When a tire nut is "frozen" (stuck), a pipe is sometimes put over  

 the handle of the tire wrench (Fig. 25).  Using the vocabulary and 

ideas of vectors, explain why this is effective. 
 

33. Does the torque on wrench  A  produced by  B  plus the torque 

produced by  C  equal the torque produced by  B + C ?  Why or why not? 
 
Areas 
 

34. Sketch the parallelogram with sides  A = 〈 5, 1, 0 〉  and  B = 〈 2, 4, 0 〉  and find its area.  Sketch and 

find the area of the triangle with sides  A  and  B . 
 

35. Sketch the parallelogram with sides  A = 〈 1, 2, 0 〉  and  B = 〈 0, 4, 2 〉  and find its area.  Sketch and 

find the area of the triangle with sides  A  and  B . 
 
36. Sketch the triangle with vertices  P = (4, 0, 1), Q =(1, 3, 1), and R = (2, 0, 5)  and find its area. 
 
37. Sketch the triangle with vertices  P = (1, 4, –2), Q =(3, 5, 1), and R = (5, 2, 2)  and find its area. 
 
38. Sketch the triangle with vertices  P = (a, 0, 0), Q =(0, b, 0), and R = (0, 0, c)  and find its area. 

 
Triple Scalar Products 
 
39. Sketch a parallelepiped with edges  A = 〈 2, 1, 0 〉  , B = 〈 –1, 4, 1 〉  , C = 〈 1, 1, 2 〉   and find its volume. 
 
40. Sketch a parallelepiped with edges  A = 〈 2, 0, 3 〉  , B = 〈 0, 4, 5 〉  , C = 〈 4, 3, 0 〉   and find its volume. 
 
41. Sketch a parallelepiped with edges  A = 〈 a, 0, 0 〉  , B = 〈 0, b, 0 〉  , C = 〈 0, 0, c 〉   and find its volume. 
 
Use the result that "the volume of the tetrahedron with edges  A, B, C  (Fig. 26)  is  1/6  the volume of 

the parallelepiped with the same edges" to find the areas of the tetrahedrons in problems  42 – 45. 
 
42. Sketch the tetrahedron with vertices   

 P = (0,0,0), Q =(3,1,0), R = (0,4,0),  

 and S = (0,0,3)  and find its volume. 
 
43. Sketch the tetrahedron with vertices   

 P = (1,0,2), Q =(3,1,2), R = (0,4,3), and  

 S = (0,1,4)  and find its volume. 
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44. Sketch the tetrahedron with vertices  P = (0,0,0), Q =(2,0,0), R = (0,4,0), and S = (0,0,6)  and find its volume. 
 
45. Sketch the tetrahedron with vertices  P = (0,0,0), Q =(a,0,0), R = (0,b,0), and S = (0,0,c)  and find its volume. 
 
46. Show that if  A = 〈 a1, a2, a3 〉, B = 〈 b1, b2, b3 〉, and  C = 〈 c1, c2, c3 〉,  
  

 then  A•(B x C) = 
⎪
⎪
⎪

⎪
⎪
⎪

.

a1 a2 a3

b1 b2 b3

c1 c2 c3

  .  

 
 
Right Tetrahedrons 
 

47. The four points  (0,0,0), (2,0,0), (0,4,0), and (0,0,4)  

form a tetrahedron  (Fig. 27)  with four triangular 

faces.  Find the areas   
 Axy , Axz , Ayz , and  Axyz  of the four triangular 

faces.   

  
 

48. The four points  (0,0,0), (2,0,0), (0,4,0), and (0,0,6)  form 

a tetrahedron  (Fig. 28)  with four triangular faces.  Find 
the areas  Axy , Axz , Ayz , and  Axyz  of the four 

triangular faces.   

 

49. Verify that the answers to problems 47 and 48 satisfy the  
 relationship  (Axy)2 + (Axz)2 + (Ayz)2 = (Axyz )2 . 
 

 

 

50. For the right tetrahedron with vertices  (0,0,0), (a,0,0), (0,b,0),  

 and (0,0,c), determine the areas of the four triangular faces  

 (Fig. 29)  and prove the Pythagorean type result for areas of  

 triangles in a right tetrahedron:    
 
  (Axy)2 + (Axz)2 + (Ayz)2 = (Axyz )2 .   

 
 



11.5 Cross Product Contemporary Calculus  12 

51. The Pythagorean pattern   

 a2 + b2 = c2  

 can be thought of as relating a line segment 

C in two dimensions and its "shadows"  a  

and  b  on the coordinate axes.  Show that 

this "shadow" interpretation also holds for 

the area of a triangle in  three dimensions 

and the areas of its "shadows" on the three 

coordinate planes (Fig. 30):  
 
  (area of dark triangle)2 = (xy shadow area)2 + (xz shadow area)2 + (yz shadow area)2 . 
 
 
Areas of Regions in the Plane 
 

Among its several uses, the cross product also leads to a simple, easily programmed algorithm for finding 

the area of a "simple" (no edges cross) polygon in the plane, and this algorithm is used to approximate the 

areas of other regions as well. 
 

 

 
Suppose  P0 = (0, 0) , P1 = (x1, y1) , ... , P4 = (x4, y4)   are  5  vertices of a simple polygon  (Fig. 31a), 

with one vertex at the origin and then labeling the others as we travel counterclockwise around the 
polygon.  Let  V1  be the vector from  P0 to P1, V2 from P0 to P2, ...  (Fig. 31b).   Then the area of the 

polygon in Fig. 31c  is the sum of the  3  triangular areas  T1, T2, and  T3 and each triangular area can 

be found using a cross product: T1 = 
1
2  | V1 x V2 | = 

1
2 ( x1y2 – x2y1 ) ,  

T2 = 
1
2  | V2 x V3 | = 

1
2 ( x2y3 – x3y2 ) , and  T3 = 

1
2  | V3 x V4 | = 

1
2 ( x3y4 – x4y4 )  .   
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Finally, the total area is the sum  
 
 Area  =  T1 + T2 + T3  
 

  = 
1
2  { (x1y2 – x2y1) + (x2y3 – x3y2) + (x3y4 – x4y3) }   

 

  = 
1
2 ∑

k=1

n–1
 (xkyk+1 – xk+1yk)    with  n = 4 . 

 

The last summation formula works for polygons with at least three vertices.  In fact, this algorithm is used 

by computers to report the area of a region traced by a cursor or stylus:  the computer reads the  (x,y)  

location of the cursor several times per second and uses the data and this algorithm to calculate the area of 

the region (as approximated by a many–sided polygon). 
 

52. Use the given pattern to find the area of the rectangle with vertices  (0,0), (2,0), (2,3), and (0,3).  Does 

the pattern give the area of the rectangle? 
 

53. Use the given pattern to find the area of the pentagon with vertices  (0,0), (4,1), (5,3), (4,4), (2,4), and (1,3). 
 

54. How can we modify the algorithm to handle the situation in which none of the vertices are at the origin?  

Show that your modification works for the rectangle with vertices  (1,3), (3,3), (3,6), and (1,6). 
 

Note: The cross product satisfies a "right hand rule" so if we  

 go counterclockwise from  U  to  V  (Fig. 32a) then   

 U x V  is positive, and if we go clockwise from U  

 to V  (Fig. 32b) then U x V is negative.   
 
 

55. In Fig. 33a,  
1
2  V1 x V2  gives the area of T1 as a  

 positive number;    
1
2  V2 x V3  gives the area of  

 T2 as a negative number;  and  
1
2  V3 x V4  gives  

 the area of T3 as a positive number.   

 Explain geometrically how these positive and 

negative numbers "fit together" to give the  

 correct area for the region in Fig. 33b. 
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Practice Answers 
 

Practice 1: | |–3 4
5 6   = (–3)(6) – (4)(5) = –38.  | |x y

0 –3   = (x)(–3) – (y)(0) = –3x .   

 

 ⎪
⎪

⎪
⎪i j

–4 3   = (i)(3) – (j)(–4) = 3i + 4j . 

 

Practice 2: 
⎪
⎪
⎪

⎪
⎪
⎪3 5 0

1 4 –1
–2 0 6

   =  (3)| |4 –1
0 6   – (5)| |1 –1

–2 6   + (0)| |1 4
–2 0   = (3)(24) – (5)(4) + (0)(8) = 52. 

 

 
⎪
⎪
⎪

⎪
⎪
⎪i j k

2 –1 3
4 0 5

   =  i | |–1 3
0 5   – j | |2 3

4 5   + k | |2 –1
4 0   = –5i  + 2j + 4k . 

 

Practice 3: j x k = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

0 1 0
0 0 1

  =  i | |1 0
0 1   – j | |0 0

0 1   + k | |0 1
0 0   = 1i – 0j + 0k = i . 

 

 k x j = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

0 0 1
0 1 0

  = –i .     j x j = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

0 1 0
0 1 0

  = 0 . 

 

Practice 4: A x B  =  
⎪
⎪
⎪

⎪
⎪
⎪i j k

3 0 –5
–2 4 1

  =  i | |0 –5
4 1   – j | |3 –5

–2 1   + k | |3 0
–2 4   = 20i  + 7j + 12k . 

 
 

 
Practice 5: See Fig. 34.  The pair in  (a)   

 produces the larger torque. 
 
 
 
Practice 6: For  B,  

 | torque | = (8 inches)(50 pounds) sin(40°) 

  ≈ 257.1 inch–pounds. 

 For  C, | torque | = (12 inches)(20 pounds) sin(60°) ≈ 207.8 inch–pounds. 

 Force B produces the larger torque:  sometimes strength is enough. 
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Appendix:  Some Proofs 
 
Proof of (a):  0 x A = A x 0 = 0.   If    A = 〈 a1, a2, a3 〉 ,  then 
 

 0 x A = 
⎪
⎪
⎪

⎪
⎪
⎪i j k

0 0 0
a1 a2 a3

  =   i ⎪⎪ ⎪
⎪0 0

a2 a3    – j ⎪
⎪

⎪
⎪0 0

a1 a3   + k ⎪
⎪

⎪
⎪0 0

a1 a2       = 0i – 0j + 0k  . 

 
 The proof that  A x 0 = 0  is similar. 
 
Proof of (b):  A x A =  0.   If  A = 〈 a1, a2, a3 〉 ,  then 
 

 A x A = 
⎪⎪
⎪⎪

⎪⎪
⎪⎪

i j k
a1 a2 a3
a1 a2 a3

  =   i ⎪
⎪

⎪
⎪a2 a3

a2 a3
   – j ⎪

⎪
⎪
⎪a1 a3

a1 a3
  + k ⎪

⎪
⎪
⎪a1 a2

a1 a2
   = 0i  –  0j + 0k =  0 . 

 
Proof that    | A x B |  =  |A||B| |sin(θ)| : 
 
 A x B  =  (a2b3 – a3b2)i + (a3b1 – a1b3)j + (a1b2 – a2b1)k   so 
 
  | A x B |2  =  (A x B)•(A x B)   

 = (a2b3 – a3b2)2 + (a3b1 – a1b3)2 + (a1b2 – a2b1)2   

 = a2
2b3

2 – 2a2b3a3b2 +  a3
2b2

2  +  a3
2b1

2 – 2a3b1a1b3 + a1
2b3

2 + a1
2b2

2 – 2a1b2a2b1  + a2
2b1

2    

 = ( a1
2 + a2

2 + a3
2 )(  b1

2 + b2
2 + b3

2 )  –  ( a1b1 + a2b2 + a3b3 )2    (expand & check) 

 = |A|2|B|2 – (A•B)2   

 = |A|2|B|2 – ( |A||B|cos(θ) )2  since  A•B = |A||B|cos(θ) 

 = |A|2|B|2 – |A|2|B|2cos2(θ)   

 =  |A|2|B|2 { 1 – cos2(θ) }   

 =  |A|2|B|2 sin2(θ) . 
 
 Then, taking the square root of each side of  | A x B |2 =  |A|2|B|2 sin2(θ) , we have    

  | A x B |  =  |A||B| | sin(θ) | . 


