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Chapter 10:  Odd Answers 
 
Section 10.0 
 

1. (a) 32, 64   (b) 25   (c) 2n 3. (a)  –1, +1  (b)  –1 = (–1)5   (c)  (–1)n   
 

5. (a) 120, 720   (b) 5! or 5.24  (c) n! or n.an–1   7.  1, 3/2, 11/6, 25/12, 137/60, 147/60 
 
9. 1, 1/2, 3/4, 5/8, 11/16, 21/32 11. 1, 0, 1, 0, 1, 0  
 
13. (a)  g(5) = –1, g(6) = +1   (b)  see the figure for  g(x).  
 
15. (a) t(5) = 1 – 1/2 + 1/4 – 1/8 + 1/16 – 1/32 = 21/32,   

  t(6) = 43/64 .  The graph of t(x) is shown. 

 

 

17. (a) P(x) = 1 –  
x2

2    (b)  Graphs 
  x P(x) cos(x) | P(x) – cos(x) |  
  0 1.0 1.0 0 
  0.1 0.995 0.99500 0 
  0.2 0.98 0.98006 0.00006 
  0.3 0.955 0.95533 0.00033 
  1.0 0.5 0.54030 0.04030 
  2.0 –1.0 –0.41615 0.58385 

 (c) P(x) =  1 –  
x2

2    +  
x4

24     

 Graphs 

  x P(x) cos(x) | P(x) – cos(x) |  
  0 1.0 1.0 0 
  0.1 0.99500 0.99500 0 
  0.2 0.98006 0.98006 0 
  0.3 0.95533 0.95533 0 
  1.0 0.54167 0.54030 0.00137 
  2.0 –0.33333 –0.41615 0.08282 
 

19. P(x) = Ax + B.  5 = P(0) = A.0 + B = B  so  B = 5.  3 = P '(0) = A.  P(x) = 3x + 5. 
21. P(x) = Ax + B.  4 = P(0) = A.0 + B = B  so  B = 4.  –1 = P '(0) = A.  P(x) = –1x + 4. 
 
23. P(x) = 0x + 4 = 4. 25. P(x) = Ax + B.  P(0) = B.  P '(0) = A. 
 

27. P(x) = Ax2 + Bx + C.  –2 = P(0) = A.0 + B.0 + C = C.  7 = P '(0) = 2A.0 + B = B.   

 6 = P "(0) = 2A   so  A = 6/2 = 3.  P(x) = 3x2 + 7x – 2. 
 

29. P(x) = Ax2 + Bx + C.  8 = P(0) = A.0 + B.0 + C = C.  5 = P '(0) = 2A.0 + B = B.   

 10 = P "(0) = 2A   so  A = 10/2 = 5.  P(x) = 5x2 + 5x + 8. 
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31. P(x) = Ax2 + Bx + C.  –3 = P(0) = A.0 + B.0 + C = C.  –2 = P '(0) = 2A.0 + B = B.   

 4 = P "(0) = 2A   so  A = 4/2 = 2.  P(x) = 2x2 – 2x – 3. 
 
33. P(x) = Ax3 + Bx2 + Cx + D.  5 = P(0) = A.0 + B.0 + C.0 + D = D.  3 = P '(0) = 3A.0 + 2B.0 + C = C. 

 4 = 6A0 + 2B = 2B  so  B = 4/2 = 2.  6 = P "'(0) = 6A  so  A = 6/6 = 1. 

 P(x) = 1x3 + 2x2 + 3x + 5. 
 
35. P(x) = Ax3 + Bx2 + Cx + D.  4 = P(0) = A.0 + B.0 + C.0 + D = D.  –1 = P '(0) = 3A.0 + 2B.0 + C = C. 

 –2 = 6A0 + 2B = 2B  so  B = –2/2 = –1.  –12 = P "'(0) = 6A  so  A = –12/6 = –2. 

 P(x) = –2x3 – 1x2 – 1x + 4. 
 
37. P(x) = Ax3 + Bx2 + Cx + D.  4 = P(0) = A.0 + B.0 + C.0 + D = D.  0 = P '(0) = 3A.0 + 2B.0 + C = C. 

 –4 = 6A0 + 2B = 2B  so  B = –4/2 = –2.  36 = P "'(0) = 6A  so  A = 36/6 = 6. 

 P(x) = 6x3 – 2x2 + 0x + 4 = 6x3 – 2x2 + 4 . 
 
39. A = P "'(0)/6,  B = P "(0)/2, C = P '(0),  and  D = P(0). 
 
Section 10.1 
 

1. 
1
n2  3. 

n – 1
n    =  1 –  

1
n    5. 

n
2n     

7. { –1, 0, 1/3, 1/2, 3/5, 2/3, ... }  Graph is shown. 9. { 1, 2/3, 3/5, 4/7, 5/9, 6/11, ... }  Graph is shown. 
 

11. { 2, 31
2  , 22

3  , 31
4  , 24

5  , 31
6   , ... }  Graph is shown. 13. { 0, 

1
2  , – 

2
3  , 

3
4  , – 

4
5  , 

5
6  , ...}  Graph is shown. 

15. { 1, 
1
2  , 

1
3!  , 

1
4!  , 

1
5!  , 

1
6!  , ... }  =  { 1, 

1
2  , 

1
6  , 

1
24  , 

1
120  , 

1
720  , ... }   The graph is shown below. 
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17. { 
21

1!  , 
22

2!  , 
23

3!  , 
24

4!  , 
25

5!  , 
26

6!  , ... }    The graph is shown. 
 
19. a1 = 2, a2 = –2, a3 = 2, a4 = –2, a5 = 2, a6 = –2, a7 = 2, a8 = –2, a9 = 2, a10 = –2    
 
21. { sin(2π/3), sin(4π/3), sin(6π/3), sin(8π/3), sin(10π/3), sin(12π/3), sin(14π/3), sin(16π/3),  

 sin(18π/3),  sin(20π/3),  ... } 
 
23. c1 = 1, c2 = 3, c3 = 6, c4 = 10, c5 = 15, c6 = 21, c7 = 28, c8 = 36, c9 = 45, c10 = 55 
 
25. { an } appears to converge.  { bn } does not appear to converge. 
 
27. { en } does not appear to converge.  { fn } appears to converge. 
 

29. {  1 –  
2
n    }   converges to 1. 31. {  

n2
n + 1   }  grows arbitrarily large and diverges. 

 

33. {  
n

2n – 1   }   converges to  
1
2  35. {  ln( 3 + 

7
n   }   converges to  ln(3) ≈ 1.099 .   

 

37. {  4 + (–1)n  }  alternates in value between 3 and 5 and does not appraoch a single number.   

 The sequence diverges. 
 

39. {  
1
n!   }   converges to  0.  

 

41. {  (1 – 
1
n )n  }   converges to  e–1 =  

1
e  .   (See Section 3.7, Example 7.) 

 

43. {  
(n + 2)(n – 5)

n2    } =  {  
n2 – 3n – 10

n2    } =  { 1 – 
3
n   – 

10
n2   }   converges to  1. 

 

45. Take N = 

 

3
!

.   If  n > N = 

 

3
!

  then  n2 > 

 

3
!

  and  

 

! > 3
n2  =  3

n2 " 0  . 

 

47. Take N = 
1
ε   .   If  n > N = 

1
ε   then   ε >  

1
n   =  | ( 3 –  

1
n   ) – 3 |  = |  

3n–1
n    –  3 |. 

 

49. {  
1

nth prime
   }  is a subsequence of  { 

1
nth integer

  } = { 
1
n  }  which converges to 0,  so we can  

 conclude that   {  
1

nth prime
   }  converges to 0. 

 

51. { (–2)n( 
1
3  )n } =  {  (–1)n( 

2
3  )n } .   

 If  n  is  even, {  (–1)n( 
2
3  )n } =  { ( 

2
3  )n }  which converges to 0.  If  n  is  odd,  

 {  (–1)n( 
2
3  )n } =  { – ( 

2
3  )n }  which also converges to 0.  Since  "n even" and "n odd"  account  

 for all of the positive integers, we can conclude that  { (–2)n( 
1
3  )n }  converges to 0. 
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53. {  (1 + 
5
n2  )(n

2) }  is a subsequence of  {  (1 + 
5
n  )n }  which converges to e5  (Section 3.7, Example 7)   

 so  {  (1 + 
5
n2  )(n

2) }  also converges to  e5 . 

 

55. an = 7 – 
2
n   so  an+1 = 7 – 

2
n+1   .  an+1 – an = ( 7 – 

2
n+1  ) – (7 – 

2
n  )  = 

2
n  – 

2
n+1   = 

2
n(n+1)   > 0 for all n ≥ 1. 

 Therefore,   an+1 > an = and  { an }  is monotonically increasing. 
 
57. an = 2n  so  an+1 = 2n+1 .  an+1 – an = 2n+1 – 2n  = 2n2 – 2n  =  2n( 2 – 1) = 2n > 0  for all  n ≥ 1. 

 Therefore,   an+1 > an = and  { an }  is monotonically increasing. 
 

59. an =  
n + 1

n!     so  an+1 =  
(n+1) + 1

(n+1)!    =  
n + 2
(n+1)!   .  Then   

 

 
an+1
an    =  

n + 2
(n+1)!

 
n + 1

n!  
   =  

n + 2
n + 1  

n!
(n+1)!   =  

n+2
n+1  

1.2.3. ... .n
1.2.3.... .n.(n+1)

   =  
n + 2
n + 1  

1
n + 1   < 1 for all n ≥ 1 

 
 so  an+1 <  an  for all  n ≥ 1  and  { an }  is monotonically decreasing. 
 

61. an =  ( 
5
4  )n  so  an+1 =  ( 

5
4  )n+1 .  Then   

 

 
an+1
an    =  

 ( 
5
4 )n+1 

( 
5
4 )n

  =   
5
4  > 1  for all n  so  an+1 >  an  for all  n > 0  and  { an }  is montonically increasing. 

 

63. an =  
n
en   so  an+1 =  

n+1
en+1  .  Then 

 

 
an+1
an    =  

 
n+1
en+1 

n
en

   =  
n+1

n  
en

en+1   =  
n+1

n   
1
e   < 1  for  n > 1  (reason: e > 2  so  n.e > 2n > n + 1 so  

n+1
n.e

  < 1). 

 
 So  an+1 <  an  for all  n > 0  and  { an }  is monotonically decreasing. 
 

65. Let  f(x) = 5 – 
3
x  .  Then  f '(x) = 

3
x2   > 0  for all x  so  f(x) is increasing.  From that we can conclude that 

 an =  f(n)  is monotonically increasing. 
 

67. Let  f(x) = cos( 
1
x  ).  Then  f '(x) = –sin( 

1
x  ).( –1

x2  )  =  
1
x2  .sin( 

1
x  )  > 0 for all  x ≥ 1.  From that we  

 can conclude that   an =  f(n)  is monotonically increasing. 

 
69. This is similar to problem 59.  The ratio method works nicely. 
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71. One method is to examine  an+1 – an =  ( 1 – 
1

2n+1  ) – ( 1 – 
1
2n  )  =  

1
2n  – 

1
2n+1   = 

1
2n   – 

1
2.2n   = 

1
2.2n   > 0   

 for  all  n  so  an+1 > an  for all n  and  { an }  is monotonically increasing. 

 The ratio and derivative methods also work.   

 (  D( 1 – 
1
2x  ) = D( 1 – 2–x ) = 0 – 2–x .ln(2).D( –x ) = 2–x ln(2) = 

ln(2)
2x    > 0  for x > 0.) 

73. This is similar to problem 63.  The ratio method works nicely. 

75. N = 4:  a1 = 4, a2 = 
1
2 (4 + 

4
4 )  = 

5
2  = 2.5 , a3 = 

1
2 (2.5 + 

4
2.5 )  = 2.05 ,  an =  

1
2 ( 2.05 +  

4
2.05 )  ≈ 2.00061 . 

 N = 9:  a1 = 9, a2 = 
1
2 (9 + 

9
9 )  = 

10
2   = 5 , a3 = 

1
2 (5 + 

9
5 )  = 3.2 ,  an =  

1
2 ( 3.2 +  

9
3.2 )  = 3.00625 . 

 N = 5:  a1 = 5, a2 = 
1
2 (5 + 

5
5 )  = 

6
2  = 3 .  a3 = 

1
2 (3 + 

5
3 )  ≈ 2.333 ,  an =  

1
2 ( 2.333 +  

5
2.333 )  ≈ 2.238 . 

 

77. (a) p = 0.02 , and we want to solve  0.01 = 
0.02

0.02k + 1   for  k.  Then  0.02k + 1 = 
0.02
0.01   =  2  so 

  0.02k = 1  and  k = 
1

0.02   =  50 generations. 

 (b) We want to solve  
1
2  p =  

p
kp + 1   for  k  in terms of  p.   kp + 1 =  

p
0.5p   = 2  so  kp = 1  and 

  k = 
1
p    generations. 

 
 79. (a) The first "few" grains can be anywhere on the x–axis. 

 (b) After a "lot of grains" have been placed, there will be a large pile of sand close to 3 on the x–axis. 
 
81. –1 ≤ sin( n ) ≤ 1  for all integers  n. 

 (a) The first few grains will be scattered between  –1  and  +1  on the x–axis. 

 (b) After a "lot of grains" have been placed, the sand will be scattered "uniformly" along the 

interval from –1 to +1.  (See part (c).) 

 (c) This argument is rather sophisticated, but the result is interesting:  no two grains ever end up on 

the same point. 

  We assume that two grains do end up on the same point, and then derive a contradiction.  From 

this we conclude that our original assumption (two grains on one point) was false. 
  Assume that two grains do end up on the same point so  am = an for distinct integers  m  and n.  

Then  sin( m ) = sin (n )  so  0 = sin(m) – sin(n) =  2.sin(  
m–n

2   ).cos( 
m+n

2   )  and either  sin(  

m–n
2   ) = 0  or  cos( 

m+n
2   ) = 0.  If  sin(  

m–n
2   ) = 0, then  

m–n
2     = πK  for some integer  K  and  π 

= 
m–n
2K    where  m, n, and K are integers.  Then  π  is a rational number, a contradiction of the fact 

that  π  is irrational. 

  If  cos( 
m+n

2   ) = 0, then  
m+n

2    =  
π
2   + Kπ = π( 

1
2  + K )  for some integer  K  so  π = 

m+n
1 + 2K   , a 

rational number.  This again contradicts the irrationality of π, so out original assumption (two grains 

on the same point) was false. 
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Section 10.2 

1. ∑
k=1

∞
   

1
k  3. ∑

k=1

∞
   

2
3k  5. ∑

k=1

∞
 ( – 

1
2 ) k  or  ∑

k=1

∞
 (–1) k. 1

2k  

 
7. The graph is given. 9. The graph is given. 11. The graph is given. 
 

 
13. a1 = 3 , a2 = –1 , a3 = 2 , a4 = 1  15. a1 = 4 , a2 = 0.5 , a3 = –0.2 , a4 = 0.5  
 

17. a1 = 1 , a2 = 0.1 , a3 = 0.01 , a4 = 0.001  19. ∑
k=1

∞
   

8
10k  

 

21. ∑
k=1

∞
   

5
10k  23. ∑

k=1

∞
   

a
10k  25. ∑

k=1

∞
   

17
100k  

 

27. ∑
k=1

∞
   

7
100k  29. ∑

k=1

∞
   

abc
1000k  31. ∑

k=0

∞
    30.(0.8)k   

 

33. 80, 64, 51.2, 100.( 0.8 )n   
 

35. ( 1/4 )n  →  0  so the series may converge or may diverge. (Later we will see that it converges.) 
 

37. ( 4/3 )n  →  ∞ ≠ 0  so the series diverges. 
 

39. 
sin(n)

n    →  0  so the series may converge or may diverge.  
 
41. cos( 1/n )  →  cos(0) = 1 ≠ 0  so the series diverges. 
 

43. 
n2 – 20
n5 + 4

   →  0  so the series may converge or may diverge. (Later we will see that it converges.) 

 
 
 
 
 

n
1 2 3 4

10

20

30

Problem 7
1 2 3 4

n

1

0.5

Problem 11
1 2 3 4

n

1

0.5

Problem 9

5
1

14

30

1
3

7
12

47
60

57
60

1
2

3
4

7
8

15
16
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Section 10.3 
 

1. ∑
k=0

∞
  ( 

1
3 ) k  =  

1

1 – ( 
1
3 )

   =  
3
2  2. ∑

k=0

∞
  ( 

2
3 ) k  =  

1

1 – ( 
2
3 )

   =  3 

 

3. 
1
8  . ∑

k=0

∞
  ( 

1
2 ) k  =  

1
8  . 1

1 – ( 
1
2 )

   =  
1
4  5. – 

2
3  . ∑

k=0

∞
  ( – 

2
3 ) k  = – 

2
3  . 1

1 – ( – 
2
3 )

   =  – 
2
5   

 

7. (a) 
1
2  . ∑

k=0

∞
  ( 

1
2 ) k  =  

1
2  . 1

1 – ( 
1
2 )

   = 
1
2  . 21   = 1 ,  

1
3  . ∑

k=0

∞
  ( 

1
3 ) k  =  

1
3  . 1

1 – ( 
1
3 )

   =  
1
3  . 32   =  

1
2   

 

 (b) 
1
a  . ∑

k=0

∞
  ( 

1
a ) k  =  

1
a  . 1

1 – ( 
1
a )

   = 
1
a  . a

a – 1   = 
1

a – 1    

 

9. (a) 40.(0.4)n–1    (b) 40.
∑

k=0

∞
  ( 0.4 ) k   (c) 40 . 1

1 – 0.4    =  
40
0.6   =  66 23   ft. 

 

11. (a) ∑
k=1

∞
  ( 

1
2 ) k   (b) 

1
2   ,  

1
4   ,  ( 

1
2  )n (c) All of the cake. 

 

13. 1 +  
1
4   +  ( 

1
4  )2  +  ( 

1
4  )3 + ...  = ∑

k=0

∞
  ( 

1
4 ) k   =  

4
3   . 

 

15. (a) Area = 1  +  
3
9   +  

3
9  . 49   +  

3
9 ( 

4
9 ) 2  +  

3
9 ( 

4
9 ) 3 + ... = 1 + 

3
9  { 1 + 

4
9   +  ( 

4
9  )2 +  ( 

4
9  )3 + ... }   

 

   =  1 + 
3
9  {  1

1 – (4/9)   }  = 1 + 
3
5   =  

8
5   =  1.6 . 

 

 (b) Let  L  be the length of the original triangle  ( L = 3  
4
3    ) and  Pn be the perimeter at  

  the nth step.  Then  P0 = 3L.  P1 = 3.4.( L3  ) = 4L,   

  P2 =  3.42.( L
32  )  = 3L ( 

4
3  )2   

  P3 =  3.43.( L
33  )  = 3L ( 

4
3  )3   

  P4 =  3.44.( L
34  )  = 3L ( 

4
3  )4  , and, in general, 

  Pn =  3.4n.( L
3n  )  = 3L ( 

4
3  )n  . 

  Since  
4
3  > 1, the sequence of terms  3L ( 

4
3  )n  grows without bound, and the perimeter  

  "approaches infinity." 
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17. (a) Height = 2 + 2( 
1
2  ) + 2( 

1
4  ) + 2( 

1
8  ) + ... = 2{ 1 + 

1
2  +  ( 

1
2  )2 + ( 

1
2  )3 + ... } = 2. 1

1 – 
1
2
   = 4. 

 (b) Surface area = 4π(1)2 + 4π( 
1
2  )2 + 4π( 

1
4  )2 + 4π( 

1
8  )2 + ... 

   = 4π{ 1 + 
1
4  + ( 

1
4  )2 + ( 

1
4  )3 + ... } =  4π . 1

1 – 
1
4
   =  

16π
3    ≈  16.755 . 

 (c) Volume = 
4π
3  (1) 3 +  

4π
3  ( 

1
2 ) 3 +  

4π
3  ( 

1
4 ) 3 +  

4π
3  ( 

1
8 ) 3 + ... 

   = 
4π
3   { 1 + 

1
8   +  ( 

1
8  )2 +  ( 

1
8  )3 + ...  }  =  

4π
3   . 1

1 – 
1
8
   = 

32π
21    ≈  4.787 . 

 

19. 0.8888 ... =  
8
10  + 

8
102  + 

8
103  + ...  =  

8
10  { 1 + 

1
10  + ( 

1
10  )2 + ( 

1
10  )3 + ...} = 

8
10  { 

10
9   } =  

8
9  . 

 0.9999 ... =  
9
10  + 

9
102  + 

9
103  + ...  =  

9
10  { 1 + 

1
10  + ( 

1
10  )2 + ( 

1
10  )3 + ...} = 

9
10  { 

10
9   } =  1 . 

 0.285714 ...  =  
285714
1000000   +  

285714
10000002   +  

285714
10000003  + ...   

  =  
285714
1000000  { 1 +  

1
1000000   +  ( 

1
1000000  )2  +  ( 

1
1000000  )3 + ...}  

  =  
285714
1000000  { 

1000000
999999   } =  

285714
999999  . 

 
21. Series converges for  | 2x + 1 | < 1:  –1 < x < 0. 23. Series converges for | 1 – 2x | < 1:  0 < x < 1 . 
 

25. Series converges for | 7x | < 1:  – 
1
7   < x <  

1
7  . 27. Series converges for  | 

x
2  | < 1:  –2 < x < 2 . 

 

29. Series converges for  | 2x | < 1:  – 
1
2   < x <  

1
2  .  

 

31. Series converges for  | sin(x) | < 1:  for all  x ≠  
π
2   ± Nπ  for integer values of  N. 

 
33. The formula is correct if  | x | < 1.  The value  x = 2  does not satisfy the condition  |x| < 1, so the  

 formula does not apply. 
 

35. s4 = ( 
1
3  – 

1
4  ) + ( 

1
4  – 

1
5  ) = 

1
3  – 

1
5   ,  s5 = 

1
3  – 

1
6    ,  sn =  

1
3   –  

1
n+1   →  

1
3  

 

37. s3 = ( 13 – 23 ) + ( 23 – 33 ) + ( 33 – 43 ) = 1 – 43  ,  s4 = 1 – 53   ,  sn =  1 – (n+1)3  →  – ∞ . 
 
39. s4 = ( f(3) – f(4) ) +  ( f(4) – f(5) ) = f(3) – f(5) ,  s5 = f(3) – f(6)  ,  sn =  f(3) – f(n+1) 
 

41. s4 = sin(1) – sin( 
1
5  ) ≈ 0.643 , s5 = sin(1) – sin( 

1
6  ) ≈ 0.676 ,  sn = sin(1) – sin( 

1
n+1  )  →  sin(1) ≈ 0.841 . 

 

43. s4 = ( 
1
22   – 

1
32  ) + ( 

1
32   – 

1
42  ) + ( 

1
42   – 

1
52  ) = 

1
4   – 

1
25  ,  s5 = 

1
4   – 

1
36    ,  sn = 

1
4   – 

1
(n+1)2

   →   
1
4    

 
45. & 47.   On your own. 
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Section 10.3.5 
 
Integrals and sums 

1. The sum. 2. The integral. 3. ∑
k=1

∞
   f(k) 

4. ∑
k=1

∞
   f(k) 5. ∑

k=2

∞
   f(k) 6. (b) f(1) + f(2)   

 
7. (b) f(1) + f(2)   8. (d)  f(3) + f(4) 9. (c) f(2) + f(3) 
 

10. (b), (d), (a), (c) :  ⌡⌠
2

4
 f(x) dx    <  f(2) + f(3)  <  ⌡⌠

1

3
 f(x) dx    <  f(1) + f(2) 

11. (c), (a), (d), (b) :  f(1) + f(2) + f(3)  <  ⌡⌠
1

4
 f(x) dx   <  f(2) + f(3) + f(4)  <  ⌡⌠

2

5
 f(x) dx   

Comparisons 
 
12. (a) No.  You are definitely too tall. (b) Apply.  You may meet the requirements. 

 (c) No.  Definitely too short. (d) Apply.  You may meet the requirements. 

 (e) You do not meet the requirements if you are {shorter than Sam}  or  {taller than Tom}. 

 (f) You do not have enough information if you are {shorter than Tom}  or  {taller than Sam}. 
 
13. (a) You did well  (better than Wendy). (b) You may have done well or poorly. 

 (c) You may have done well or poorly. (d) You did poorly  (worse than Paula). 
 
14. (a) Baker is too easy  (easier than Index). (b) Baker may be right for you. 

 (c) Baker  may be right for you. (d) Baker is too hard for you  (harder than Liberty Bell). 

 (e)  Baker may be a good climb for you if it is harder than Index and easier than Liberty Bell. 

 (f) Baker is too easy if Baker is easier than Index.  Baker is too hard if Baker is harder than Liberty Bell. 
 
15. (a) Expect Unknown to be (very) good. (b) Unknown is still unknown. 

 (c) Unknown is still unknown. (d) Unknown is bad. 
 

16. ∑
k=1

∞
  

1
k2 + 1

    <    ∑
k=1

∞
  

1
k2  17. ∑

k=2

∞
  

1
k3 – 5

    >   ∑
k=2

∞
  

1
k3  

 

18. ∑
k=1

∞
  

1
k2 + 3k – 1

   <    ∑
k=1

∞
  

1
k2  19. ∑

k=3

∞
  

1
k2 + 5k

    >  ∑
k=3

∞
  

1
k3 + k – 1

  

 
Ratios of successive terms 
 

20. ak = 3k,  ak+1 = 3(k+1) ,   
ak+1
ak     =  

k+1
k    . 21. ak = k + 3,  ak+1 = (k+1) + 3,   

ak+1
ak     =  

k+4
k+3   .   
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22. ak = 2k + 5,  ak+1 = 2(k+1) + 5,   
ak+1
ak     =  

2k+7
2k+5   .  

23. ak = 3/k ,  ak+1 =  
3

k+1 ,   
ak+1
ak     =  

 
3

k+1 
3
k

   =  
k

k+1 .  

24. ak = k2,  ak+1 = (k+1)2 ,   
ak+1
ak     =  

(k+1)2

k2    . 25. ak = 2k,  ak+1 = 2k+1 ,   
ak+1
ak     =  

2k+1

2k    = 2 . 

26. ak = ( 1/2 )k,  ak+1 = ( 1/2 )k+1 ,   
ak+1
ak     =  

(1/2)k+1

(1/2)k
   = 

1
2   . 

27. ak = xk,  ak+1 = xk+1 ,   
ak+1
ak     =  

xk+1

xk    = x . 

28. ak = ( x – 1 )k,  ak+1 = (x–1)k+1 ,   
ak+1
ak     =  

(x–1)k+1

(x–1)k
   = x – 1 . 

29. ∑
k=1

∞
  ( 

1
2 ) k  is a geometric series with  r = 1/2  so the series converges.    

ak+1
ak     =  

(1/2)k+1

(1/2)k
   = 

1
2   . 

30. ∑
k=1

∞
  ( 

1
5 ) k   is a geometric series with  r = 1/5  so the series converges.    

ak+1
ak     =  

(1/5)k+1

(1/5)k
   = 

1
5   . 

31. ∑
k=1

∞
   2k is a geometric series with  r = 2  so the series diverges.    

ak+1
ak     =  

2k+1

2k    =  2  .  

32. ∑
k=1

∞
  ( –3 ) k is a geometric series with  r = –3  so the series diverges.    

ak+1
ak     =  

(–3)k+1

(–3)k
   =  –3  . 

33. ∑
k=1

∞
   4 = 4 + 4 + 4 + ...  diverges by the Nth Term Test for Divergence since  an = 4 for all  n,  and   

  

 an  = 4  does not approach  0.    
ak+1
ak     =  

4
4   =  1  . 

34. ∑
k=1

∞
  ( –1 ) k diverges by the Nth Term Test for Divergence since  an   does not approach  0.  (It also is a 

geometric series with  r = –1  and  | r | = 1.)     
ak+1
ak     =  

(–1)k+1

(–1)k
   =  –1  . 

35. ∑
k=1

∞
  

1
k    is the harmonic series which diverges.    

ak+1
ak     =  

 
1

k+1 
1
k

   =  
k

k+1   . 

36. ∑
k=1

∞
  

7
k   =  7. ∑

k=1

∞
  

1
k   is the divergent harmonic series.   

ak+1
ak     =  

 
7

k+1 
7
k

   =  
k

k+1   . 
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Alternating terms 
 
37. If  a5 > 0, then  s4  <  s5.   38. If  a5 = 0, then  s4  = s5.  
 
39. If  a5 < 0, then  s4  > s5.  40. If  an+1 > 0 for all n, then  sn  <  sn+1  for all n. 
 
41. If  an+1 < 0 for all n, then  sn > sn+1  for all n. 42. If a4 > 0 and a5 < 0, then  s3 < s4  and  s4 > s5 . 
 
43. If a4 = 0.2 and a5 = –0.1  and a6 = 0.2, then  s3 < s5 < s4 . 
 
44. If a4 = –0.3 and a5 = 0.2  and a6 = –0.1, then  s3 > s5 > s4 . 
 
45. If a4 = –0.3 and a5 = –0.2  and a6 = 0.1, then  s3 > s4 > s5 . 
 
46. s1 = 2, s2 = 1, s3 = 3, s4 = 2, s5 = 4, s6 = 3, s7 = 5, s8 =  4. 
 
47. s1 = 2, s2 = 1, s3 = 1.9, s4 = 1.1, s5 = 1.8, s6 = 1.2,  

 s7 = 1.7, s8 = 1.3 .  The graph is given. 
 
48. s1 = 2, s2 = 1, s3 = 2, s4 = 1, s5 = 2, s6 = 1, s7 = 2, s8 = 1 . 

   The graph is given. 
 
49. s1 = –2, s2 = –0.5, s3 = –1.3, s4 = –0.7, s5 = –1.1 , s6 = –0.9, 

 s7 = 1.1, s8 = 1.0 .  The graph is given. 
 
50. s1 = 5, s2 = 6, s3 = 5.4, s4 = 5.0 , s5 = 5.2 , s6 = 5.3 ,  

 s7 = 5.4 , s8 = 5.2 .  The graph is given. 
 
51. If the  ak  alternate in sign, then the graph of the partial sums   

 sn  follows an "up–down–up–down" pattern? 
 
52. If the  ak  alternate in sign and decrease in magnitude (the | ak |   

 is decreasing), then the graph of the partial sums  sn  forms  

 a "narrowing funnel" pattern. 
 

53. (a) The terms  ak  alternate in sign for the graphs  D, E, and F. 

 (b) The  | ak |  decrease for the graphs  A  and  D. 

 (c) The terms  ak  alternate in sign and decrease in absolute  

  value for the graph  D.   
 

54. (a) The terms  ak  alternate in sign for the graphs  C, D, E,  

  and F  in Fig. 14. 
 (b) The  | ak |  decrease for the graphs  B  and  C. 

 (c) The terms  ak  alternate in sign and decrease in absolute  

  value for the graph  C. 
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55. The graph of the first eight partial sums of  

   ∑
k=0

∞
 ( – 

1
2) k = 1 – 

1
2  + 

1
4  – ... = 

2
3    is given.  

 Notice the "narrowing funnel" shape of the graph.  
 
 
 
 
56. The graph of the first eight partial sums of   

 ∑
k=0

∞
 ( – 0.6) k = 1 – 0.6 + 0.36 – ... = 0.625   

 is given.   

 Notice the "narrowing funnel" shape of the graph. 

 

57. The graph  is given of the first eight partial sums of the 

divergent series  

  ∑
k=0

∞
 ( – 2) k = 1 – 2 + 4 – ...  

 This is a divergent series  (Nth Term Test for Divergence).  

Notice the "widening funnel" shape of the graph. 
 
 
 
 
Section 10.4  (Odd numbered problem solutions followed by even numbered problem answers.) 
 

1. ⌡⌠
1

∞
  

1
2x + 5   dx  =  

1
2  ln| 2x + 5 | |A

1
  = 

1
2  ln| 2A + 5 | – 

1
2  ln| 7 |  →  ∞ (as  A →  ∞)  so  ∑

k=1

∞
  

1
2k + 5    diverges. 

3. ⌡⌠
1

∞
  (2x + 5) –3/2 dx = – (2x + 5)–1/2 |A

1
 = 

–1
2A + 5   – 

–1
7   →  

1
7  (as  A ∅  ∞)   so   ∑

k=1

∞
  

1
(2k + 5)3/2    

converges. 
 

5. ⌡⌠  
1

x.( ln(x) )2
   dx =  

–1
ln(x)  + C   (using a u–substitution with  u = ln(x)  and du = 

1
x   dx )  so 

 

 ⌡⌠
2

∞
  

1
x.( ln(x) )2

   dx =  
–1

ln(x)  |
A

2
  = 

–1
ln( A )  –  

–1
ln(2)   → 

1
ln(2)  (as  A ∅  ∞)   so   ∑

k=2

∞
  

1
k.( ln(k) )2

    converges. 

 

7. ⌡⌠
1

∞
  

1
x2 + 1

  dx = arctan(x) |A

1
 = arctan( A )  – arctan(1)  →  

π
2  – 

π
4  (as  A ∅  ∞)   so ∑

k=1

∞
  

1
k2 + 1

    converges.  
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9. This is a telescoping series:   

  ∑
k=1

∞
  { 

1
k  – 

1
k+3  } = { 1 – 

1
4  } + { 

1
2  – 

1
5  } + { 

1
3  – 

1
6  } + { 

1
4  – 

1
7  } + { 

1
5  – 

1
8  } + ... →  1 + 

1
2  + 

1
3  . 

 
 The Integral Test also works:    

 ⌡⌠
1

∞
  

1
x  – 

1
x+3  dx =  ln|x| – ln| x+3 | |A

1
  = { ln| A | – ln| A+3 | } – { ln(1) – ln(4) }  

  = ln| 
4A

A + 3  |  →  ln( 4 )   (as  A →  ∞)  so   ∑
k=1

∞
  { 

1
k  – 

1
k+3  } converges. 

 (Notice that the "telescoping series" method gives the value of the series, but the Integral Test only tells us 

that the series converges.  For this series, the "telescoping series" method is both easier and more precise.) 
 

11. ⌡⌠
1

∞
  

1
x(x + 5)  dx =  ⌡⌠

1

∞
  

1
5  { 

1
x  – 

1
x+5  } dx   (using the method of Partial Fraction Decomposition) 

  = 
1
5  { ln| x | – ln| x+5 | } =  

1
5  { ln| x

x+5  | }|A

1
  = 

1
5  { ln| A

A+5  | – ln| 16  | } → 
1
5  { ln(1) – ln( 

1
6  ) }  

 (as  A →  ∞)   so    ∑
k=1

∞
  

1
k.(k + 5)

   converges. 

13. ⌡⌠
1

∞
   x .e–(x2) dx =  

–1
2   e–(x2)  |A

1
  =  ( 

–1
2   e–(A2) ) – ( 

–1
2    e–1 )  =  

1
2e   –  

1

2e(A2) 
   →  

1
2e  (as  A ∅  ∞)   so 

   ∑
k=1

∞
   k .e–(k2)    converges. 

 

15. ⌡⌠  
1

6x + 10  dx  =  
1
3 6x + 10  + C   (using a u–substitution with  u = 6x + 10  and  du = 6 dx).  Then  

 

 ⌡⌠
1

∞
  

1
6x + 10  dx  =  

1
3 6x + 10  |A

1
  =  

1
3 6A + 10   – 

1
3 16   → ∞  (as  A →  ∞)   

 so ∑
k=1

∞
  

1
6k+10     diverges. 

 

17. p = 3 > 1  so  ∑
k=1

∞
 1
k3    converges. 19. p = 1/2 < 1  so   ∑

k=2

∞
 1

k    diverges. 

 

21. p = 3/2 > 1  so  ∑
k=3

∞
 1
k3/2    converges. 
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23.  ∑
k=1

∞
 1
k3   :  ⌡⌠

1

11
  

1
x3  dx  = 0.4958677,  1 + ⌡⌠

1

10
  

1
x3  dx  = 1.495  so  0.4958677 < s10 < 1.495 . 

 

 ⌡⌠
1

101
  

1
x3  dx  = 0.499951,  1 + ⌡⌠

1

100
  

1
x3  dx  = 1.49995  so  0.499951 < s100 < 1.49995 . 

 

 ⌡⌠
1

1000001
  

1
x3  dx  = 0.5000000,  1 + ⌡⌠

1

1000000
  

1
x3  dx  = 1.5000000  so  0.5000000 < s1000000 < 1.5000000 . 

 

25.  ∑
k=1

∞
 1
k + 1000   :  ⌡⌠

1

11
  

1
x + 1000  dx  = 0.0099404,  

1
1001   +  ⌡⌠

1

10
  

1
x + 1000  dx  = 0.0099498  

 
  so  0.0099404 < s10 < 0.0099498 .  (This is a very precise estimate of  s10 .) 

 ⌡⌠
1

101
  

1
x + 1000  dx  = 0.09522,  

1
1001   +  ⌡⌠

1

100
  

1
x + 1000  dx  = 0.0953  so  0.09522 < s100 < 0.0953 . 

 

 ⌡⌠
1

1000001
  

1
x + 1000  dx  = 6.90776,  

1
1001   +  ⌡⌠

1

1000000
  

1
x + 1000  dx  = 6.90875  so  6.90776 < s1000000 < 6.90875 . 

 

27.  ∑
k=1

∞
 1
k2 + 100

   :    ⌡⌠
1

11
  

1
x2 + 100

  dx  = 
1
10  arctan( 

x
10  )|11

1
  = 0.0733,  

1
101  +   ⌡⌠

1

10
  

1
x2 + 100

  dx  = 0.0783 

  so  0.073 < s10 < 0.078 .  Also,  0.137 < s100 < 0.147  and  0.1471 < s1000000 < 0.157 . 
 

29. For  q ≠ 1, let u = ln(x) and du = 
1
x  dx.   

 

  Then  ⌡⌠  
1

x.( ln(x) )q
  dx  =  ⌡⌠  

1
( u )q

  du  = 
1

1–q  u–q+1 = 
1

1–q ( ln(x) ) 1–q  + C. 

 

  Then  ⌡⌠
2

∞
  

1
x.( ln(x) )q

  dx  =   
1

1–q ( ln(x) ) 1–q  |A

2
  =   

1
1–q ( ln(A) ) 1–q  –   

1
1–q ( ln(2) ) 1–q  . 

  If  q < 1, then   
1

1–q ( ln(A) ) 1–q  –   
1

1–q ( ln(2) ) 1–q  → ∞   (as  A →  ∞) so   ∑
k=2

∞
 1
k.(ln k)q

    diverges. 

  

  If  q > 1, then   
1

1–q ( ln(A) ) 1–q  –   
1

1–q ( ln(2) ) 1–q  →  –   
1

1–q ( ln(2) ) 1–q  (as  A →  ∞)  
 

   so  ∑
k=2

∞
 1
k.(ln k)q

    converges. 

 
  If q = 1, then 
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    ⌡⌠
2

∞
  

1
x.( ln(x) )q

  dx  =  ⌡⌠
2

∞
  

1
x.ln(x)

  dx  = ln| ln(x) | |A

2
   = ln| ln(A) | – ln| ln(2) | → ∞ (as  A →  ∞) 

   so  ∑
k=2

∞
 1
k.(ln k)

    diverges. 

  "Q–Test:"   ∑
k=2

∞
 1
k.(ln k)q

    {diverges if q ≤ 1
converges if q > 1   

 

31. q = 3 > 1   so  ∑
k=2

∞
 1
k.(ln k)3

    converges.  

 

33. ∑
k=2

∞
 1
k.ln (k3)

    =  ∑
k=2

∞
 1
3k.ln (k)

    =  
1
3 ∑

k=2

∞
 1
k.ln (k)

    which diverges  ( q = 1 ). 

 
 
Section 10.4  Some Even Answers 
 
2. Converge 4. Diverge 6. Converge 8. Converge 10. Converge  
 
12. Converge 14. Converge 16. Converge 18. Diverge 20. Diverge  
 
30. Diverge 32. Diverge 

 

Section 10.5  (Odd numbered problem solutions followed by even numbered problem answers.) 

1. ∑
k=1

∞
 cos2( k )

k2     ≤  ∑
k=1

∞
 1
k2   which converges by the P–Test (p=2)  so  ∑

k=1

∞
 cos2( k )

k2   converges. 

   

3. ∑
n=3

∞
 5
n – 1   >  5 ∑

n=3

∞
 1
n   which is the harmonic series and is divergent, so  ∑

n=3

∞
 5
n – 1   diverges. 

 

5. –1 ≤ cos(x) ≤ 1  so  2 ≤ 3 + cos(x) ≤ 4.  Then  ∑
j=1

∞
 3 + cos( j )

j   > 2 ∑
j=1

∞
 1
j    which is the harmonic series  and is 

divergent, so  ∑
j=1

∞
 3 + cos( j )

j     diverges. 

7. ∑
k=1

∞
 ln( k )

k    > ∑
k=1

∞
 1
k   which is the harmonic series and is divergent, so  ∑

k=1

∞
 ln( k )

k     diverges. 

 

9. ∑
k=1

∞
 k + 9
k.2k    = ∑

k=1

∞
 k + 9

k  . 1
2k    < 10 ∑

k=1

∞
 1
2k   which is a convergent geometric series ( r = 

1
2  )  

  so ∑
k=1

∞
 k + 9
k.2k     converges. 
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11. ∑
n=1

∞
 1
1 + 2 + 3 + ... + (n–1) + n   =  ∑

n=1

∞
 1

 
n(n+1)

2  
   =  ∑

n=1

∞
 2
n(n+1)  ) < 2 ∑

n=1

∞
 1
n2    which converges by  

  the P–Test (p = 2)  so   ∑
n=1

∞
 1
1 + 2 + 3 + ... + (n–1) + n    converges.  

13. Let  ak = 
k + 1
k2 + 4

   and  bk = 
1
k .  Then  

ak
bk   =  

k2 + k
k2 + 4

   →  1  and  ∑
k=3

∞
 1
k   diverges  so  ∑

k=3

∞
 k + 1
k2 + 4

   diverges. 

 

15. Let  aw = 
5

w + 1   and  bw = 
5
w .  Then  

aw
bw   =  

w
w + 1   →  1  and   ∑

w=1

∞
 1
w   diverges  so  ∑

w=1

∞
 5
w + 1   diverges. 

 

17. ∑
k=1

∞
  

k3

(1 + k2)3
   =  ∑

k=1

∞
 ( 

k
1 + k2 ) 

3
  .  Let  ak = ( 

k
1 + k2  )3

    and  bk =  
1
k3   .  

  

  Then  
ak
bk   = ( 

k
1 + k2  )3

 . k
3

1    = ( 
k2

1 + k2  )3
  →  (1)3 = 1  and  ∑

k=1

∞
  

1
k3   converges by the  

  P–Test  so  ∑
k=1

∞
  

k3

(1 + k2)3
     converges. 

 

19. ∑
n=1

∞
  ( 

5 – 
1
n

n   ) 
3

 =  ∑
n=1

∞
  ( 

5
n  – 

1
n2  ) 

3
 =  ∑

n=1

∞
  ( 

5n – 1
n2   ) 

3
 .  Let    an = ( 

5n – 1
n2    )3

    and  bn = 
1
n3   .  

 

  Then  
an
bn   =  ( 

5n – 1
n2    )3

 
n3

1    = ( 
5n – 1

n2    . n1   )3
 = ( 

5n – 1
n    )3

 →  53 = 125 (positive and finite).  

    ∑
k=1

∞
  

1
k3   converges by the P–Test  so   ∑

n=1

∞
  ( 

5 – 
1
n

n   ) 
3

   converges. 

  

21. ∑
j=1

∞
 (1 –  

1
j  ) 

j
   diverges by the  Nth Term Test for Divergence since  aj = (1 –  

1
j   )j

  →  e–1 ≠ 0   as  j →  ∞ . 

 

  We could use the Limit Comparison Test by taking  bj = e–1  and showing that    
aj
bj   →  1 , but the   

  Nth Term Test for Divergence is more direct for this series. 
 

23. ∑
k=1

∞
 7k

k3 + 5
   :  The dominant term series is  ∑

k=1

∞
  

k
k3/2   = ∑

k=1

∞
  

1
k1/2   which diverges by the P–Test (p=1/2).  
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25. ∑
j=1

∞
 j3 – 4j + 3
2j4 + 7j6 + 9

   :  The dominant term series is  

 

 j3

j6j=1

!
" =  1

j3j=1

!
"   which converges by the P–Test (p=3). 

  

27. ∑
n=1

∞
 ( 

arctan( 3n )
2n  ) 

2
   :  The dominant term series is  

 

! /2
2n

" 
# 
$ 

% 
& 
' 

n=1

(
)

2

= ! 2

16
 1
n2

n=1

(
)   which converges  

  by the P–Test (p=2). 
 

29. ∑
j=1

∞
 j3 + 4j2

j2 + 3j – 2
  :  The dominant term series is  

 

 j3/2

j2j=1

!
" =  1

j1/2
j=1

!
"  which diverges by the P–Test. 

 

31. ∑
n=2

∞
 n

2 + 10
n3 – 2

    diverges using dominant terms and the P–Test (p=1).  

 

33. ∑
k=1

∞
 3
2k + 1    diverges using dominant terms and the P–Test (p=1). 

 

35. ∑
n=1

∞
  

2n3 + n2 + 5
(3 + n2)2

    diverges using dominant terms and the P–Test (p=1).  

 

37. ∑
k=1

∞
 ( 

1 – 
2
k

k   ) 
3

 = ∑
k=1

∞
 ( 

k – 2
k2  ) 

3
  converges using dominant terms  ( 

k
k2  )3

 = ( 
1
k  )3

  and the P–Test (p=3). 

 

39. ∑
k=1

∞
   

k + 5
k.3k     converges by using dominant terms  

k
k.3k  = 

1
3k   =  ( 

1
3  )k  and the Geometric Series Test (r = 1/3). 

 

41. ∑
k=1

∞
 k + 2

k2 + 1
     diverges using dominant terms and the Nth Term Test for Divergence.  

 

43. ∑
j=1

∞
 3
ej + j

    converges using dominant terms  
1
ej   =  ( 

1
e  )j  and the Geometric Series Test (r = 1/e). 

 

45. ∑
n=1

∞
 ( 

tan( 3 )
2 + n  ) 

2
  converges by using dominant terms  

1
n2    and the P–Test (p=2). 

 

47. ∑
k=1

∞
  sin3( 

1
n  )   converges by comparison with the convergent series   

 

 1
n3

n=1

!
"   
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49. ∑
j=1

∞
  cos3( 

1
n  )  diverges using the Nth Term Test for Divergence:  the terms approach  1  ≠ 0.  

 

51. ∑
n=1

∞
 ( 1 – 

2
n  ) n  diverges using the Nth Term Test for Divergence:  the terms approach  

1
e2   ≠ 0. 

 
 
Section 10.5  Some Even Answers 
 
2. Converges 4. Converges 6. Converges 8. Converges 10. Diverges  
 
12. Converges 14. Converges 16. Diverges 18. Converges 20. Diverges  
 
22. Diverges 24. Diverges 26. Converges 28. Converges 30. Converges  
 
32. Converges 34. Converges 36. Converges 38. Converges 40. Converges 
 
42. Converges 44. Converges 46. Converges 48. Diverges 50. Converges  
 
You still need to supply reasons for each answer given below. 
 
R1. Converge R2. Converge R3. Diverge R4. Diverge R5. Converge  
 
R6. Converge R7. Converge R8. Diverge R9. Converge R10. Diverge 
 
R11. Converge R12. Diverge R13. Diverge R14. Converge R15. Converge 
 
R16. Converge R17. Diverge R18. Diverge R19. Diverge R20. Converge  
 
R21. Diverge 
 

Section 10.6  (Odd numbered problem solutions followed by some even numbered 

problem answers.) 
 
1. 1, 0.2, 0.8, 0.4  Alternating (so far).  The graph of  sn  is shown.  
 
3. –1, 1, –2, 2   Alternating (so far).  The graph of  sn  is shown. 
 
5. –1, –1.6, –1.2, –1  Not alternating.  The graph of  sn  is shown. 
 
7. Alternating:  a1 = 2, a2 = –1, a3 = 2, a4 = –1, a5 = 2  
 
9. Not alternating:  a1 = 2, a2 = 1, a3 = –0.9, a4 = 0.8, a5 = –0.1  
 
11. Not alternating:  a1 = –1, a2 = 2, a3 = –1.2, a4 = 0.2, a5 = 0.2 
 
13. Graphs  A  and  C  are not the graphs of partial sums of alternating series.     
 
15.  Graph B  is not the graph of an alternating series. 
 
17. Converges. 19. Converges. 21. Diverges. 23. Converges. 
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25. Converges. 27. Diverges. 29. Converges. 31. Converges. 
 

33. s4 = – 
1

ln(2)   + 
1

ln(3)   – 
1

ln(4)   + 
1

ln(5)   ≈  –0.63247 .   

 | s4 – S | < 
1

ln(6)   ≈ 0.55811.  –1.19058 < S < –0.07436  
 

35. s4 = (–0.8)2 + (–0.8)3 + (–0.8)4 + (–0.8)5 ≈  0.20992 .  | s4 – S | < (0.8)6   ≈ 0.26214.   

 –0.05222 < S < 0.47206 .  (For your information:   s10 ≈ 0.317378 , s50 ≈ 0.355550 , s100 ≈ 0.355556 ) 
 

37. s4 = sin( 1 ) – sin( 
1
2  ) + sin( 

1
3  ) – sin( 

1
4  ) ≈ 0.441836 .  | s4 – S | < sin( 

1
5  ) ≈ 0.198669 . 

 0.243167 < S < 0.640505 .   (s10 ≈ 0.503356, s50 ≈ 0.0.540897, s100 ≈ 0.5458219 ) 
 

39. s4 = –1 + 
1
8  – 

1
27  + 

1
64   ≈  –0.896412 .    | s4 – S | < 

1
125   = 0.008 .  –0.904412 < S < –0.888412 . 

 (s10 ≈ –0.901116, s50 ≈ –0.901539, s100 ≈ –0.901542 ) 
 

41. |  
1

(n+1)+6  | ≤ 0.01  so  n = 93  works.  Use  s93 .  
 

43. | 
1
n+1  | ≤  

1
100   so  n+1   ≥ 100  and  n = 10,000 – 1  works.  Use  s9999 . 

 

45. |  
1

3n+1   |  ≤  
2

1000    so  3n+1 ≥ 500  and  n = 5  works.  Use  s5 . 

 

47. |  
1

(n+1)2
   | ≤ 

1
1000   so  (n+1)2 ≥ 1000  and  n = 31  works.  Use  s31 . 

 

49. |  
1

(n+1) + ln(n+1)   |  ≤  
4

100   so (n+1) + ln(n+1) ≥ 25 .  Some "calculator experimentation"  shows  

 that  n = 21  works.  (20+1) + ln(20+1) ≈ 24.04 so n = 20 is too small.  (21+1) + ln(21+1) ≈ 25.09   
 so  n = 21  works.  Use  s21 . 
 

51. (a) S(0.3) = x – 
(0.3)3

2.3
   +  

(0.3)5

2.3.4.5
   –  

(0.3)7

2.3.4.5.6.7
   + . . . +  (–1)n 

(0.3)2n+1

(2n+1)!    + ...  

 (b) s3 =  (0.3) – 
(0.3)3

2.3
   +  

(0.3)5

2.3.4.5
    ≈  0.29552025 . 

 (c) | S – s3  | ≤   
(0.3)7

2.3.4.5.6.7
   ≈ 0.000000043 .   ( sin( 0.3 ) ≈  0.295520206661 ) 

 

53. (a) S(0.1) = x – 
(0.1)3

2.3
   +  

(0.1)5

2.3.4.5
   –  

(0.1)7

2.3.4.5.6.7
   + . . . +  (–1)n 

(0.1)2n+1

(2n+1)!    + ...  

 (b) s3 =  (0.1) – 
(0.1)3

2.3
   +  

(0.1)5

2.3.4.5
    ≈  0.099833416667 . 

 (c) | S – s3  | ≤   
(0.1)7

2.3.4.5.6.7
   ≈ 1.98 .10–11 . .   ( sin( 0.1 ) ≈  0.099833416647 ) 
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55. (a) C(1) = 1 – 
12

2    + 
14

2.3.4
   – 

16

2.3.4.5.6
   + ... +  (–1)n 

12n

(2n)!   + ...  = 1 – 
1
2   +  

1
24   –  

1
720   + ... + (–1)n 

12n

(2n)!   + ...  

 (b) s3 =  1 – 
12

2    + 
14

2.3.4
   ≈  0.5416667 . 

 (c) | S – s3  | ≤   
(1)7

2.3.4.5.6.7
   ≈ 0.0013889 . .   ( cos( 1 ) ≈  0.5403023 ) 

 

57. (a) C(–0.2) = 1 – 
(–0.2)2

2    + 
(–0.2)4

2.3.4
   – 

(–0.2)6

2.3.4.5.6
   + ... +  (–1)n 

12n

(2n)!   + ...   

 (b) s3 = 1 – 
(–0.2)2

2    + 
(–0.2)4

2.3.4
    ≈  0.98006666667 . 

 (c) | S – s3  | ≤   
(–0.2)6

2.3.4.5.6
   ≈  8.9 .10–8 .. . .   ( cos( -0.2 ) ≈  0.980066577841 ) 

 

59. (a) E(–1) = 1 +  (–1)  +  
(–1)2

2    +  
(–1)3

2.3
   +  

(–1)4

2.3.4
   + ... +  

(–1)n
n!    + ... = 1 – 1 + 

1
2   –  

1
6   +  

1
24   –  

1
120   + ... 

 (b) s3 =  1 – 1 + 
1
2    = 0.5 . 

 (c) | S – s3  | ≤   
1
6   ≈  0.16667 .. . .   ( e–1 ≈  0.36787944 ) 

 

61. (a) E(–0.2) = 1 +  (–0.2)  +  
(–0.2)2

2    +  
(–0.2)3

2.3
   +  

(–0.2)4

2.3.4
   + ... +  

(–1)n
n!    + ...   

 (b) s3 = 1 + (–0.2) +  
(–0.2)2

2     = 0.82 (c) | S – s3  | ≤   
(0.2)3

6    ≈  0.0013333 ... .   ( e–0.2 ≈ 0.8187307 ) 
 
Section 10.6  Some Even Answers 
 
2. Alternating (so far) 4. Not alternating 6. Alternating (so far) 

8. Alternating (so far) 10. Alternating (so far) 12. Not alternating 

14. B  and  C . 16. A, B, and C 18. Converges. 20. Converges.  

22. Converges. 24. Converges  (to 0). 26. Diverges. 28. Converges.  

30. Converges. 42. n ≈ 2.7 .1043   44. n = 26 works. 46. n = 16 works.  

48. n = 21 works. 

 

Section 10.7  (Odd numbered problem solutions followed by some even numbered problem answers.) 
 
1. Conditionally convergent 3. Absolutely convergent 5. Absolutely convergent 
 
7. Absolutely convergent 9. Conditionally convergent 11. Conditionally convergent 
 
13. Conditionally convergent 15. Absolutely convergent 17. Divergent 
 
19. Conditionally convergent 21. Divergent 23. Absolutely convergent 
 
25. Conditionally convergent 27. Divergent 29. Absolutely convergent 
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31. 
n!

(n+1)!   =  
1.2.3 ... .n

1.2.3 ... .n.(n+1)
   =  

1
n+1  33. 

n!
(n+3)!   = 

1.2.3 ... .n
1.2.3 ... .n.(n+1).(n+2).(n+3)

   =  
1

(n+1)(n+2)(n+3)  

 

35. 
(n–1)!
(n+1)!   =  

1.2.3 ... .(n–1)
1.2.3 ... .(n–1).(n).(n+1)

    =  
1

(n)(n+1)  

 

37. 
(2n!)

(2n+1)!   =  
1.2.3 ... .n.(n+1). ... .(2n)

1.2.3 ... .n.(n+1).....(2n).(2n+1)
    =  

1
2n+1  39. 

nn

n!   =  
n.n.n.n. ... .n.n

1.2.3.4. ... .(n–1).n
  

 

41. Ratio =  |  n
n+1  |  → 1 = L.  Diverges  (Harmonic series)  

 

43. Ratio = 

 

 n
n + 1
! 
" 
# 

$ 
% 
& 
3
 → 1 = L.  Converges by the P–Test (p = 3). 

 

45. Ratio = | 12  | →  
1
2   = L .  Converges  (Geometric series with  r = 1/2). 

 
47. Ratio = | 1 |  → 1 = L.  Diverges by the Nth Term Test for Divergence.  
 

49. Ratio = | n!
(n+1)!  | =  | 1

n+1  | → 0 = L.  Converges by the Ratio Test. 
 

51. Ratio = |  2n+1

(n+1)!  
n!
2n   | =  | 2

n+1  | → 0 = L.  Converges by the Ratio Test. 

 

53. Ratio  = | ( 1/2 )3(n+1)

( 1/2 )3n   | = | ( 12  )3 | =  
1
8   →  

1
8   = L.  Converges by the Ratio Test. 

 

55. Ratio  = | ( 0.9 )2(n+1)+1

( 0.9 )2n+1   | = | ( 0.9 )2 | =  0.81  →  0.81  = L.  Converges by the Ratio Test. 

 

57. Ratio  = | (x–5)n+1

(x–5)n
  | = | x – 5 | → | x – 5 | = L.  Series converges absolutely if and only if  | x–5 | < 1:  4 < x < 6. 

 

59. Ratio = |  (x–5)n+1

(n+1)2
  

n2

(x–5)n
  | =  |  (x – 5).( 

 

n
n +1

)2 | →  | x – 5 | = L.  Series converges absolutely if and  

 only if  | x–5 | < 1:  4 < x < 6. 
 

61. Ratio =  | (x–2)n+1

(n+1)!   
n!

(x–2)n   |  =  |  (x–2). 1
n+1   |  → 0 = L   for all values of  x  so the series converges  

 absolutely for all values of x. 
 

63. Ratio = |  (2x–12)n+1

(n+1)2
  

n2

(2x–12)n
   |  =  | (2x–12).(  n

n+1  )2 | → | 2x – 12 | = L.  Series converges absolutely  

 if and only if  | 2x – 12 | < 1:  
11
2    < x <  

13
2   . 
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65. Ratio = |  (6x–12)n+1

(n+1)!   
n!

(6x–12)n
   |  =  | (6x–12). 1

n+1   | → 0 = L  for all values of  x  so the series  

 converges absolutely for all values of x. 
 

67. Ratio = |  (x+1)2(n+1)

n+1   
n

(x+1)2n   |  =  | (x+1)2. n
n+1   | → (x+1)2 = L  for all values of  x.  Series converges  

 absolutely if and only if  (x+1)2 < 1:  –2 < x < 0 . 
 

69. Ratio = |  (x–5)3(n+1)+1

(n+1)2
  

n2

(x–5)3n+1   |  =  | (x–5)3. ( n
n+1  )2  | →  | (x–5)3 |  = L  for all values of  x.  Series  

 converges absolutely if and only if  | (x–5)3 | < 1:  4 < x < 6 . 
 

71. Ratio = |  (x+3)2(n+1)–1

((n+1)+1)!   
(n+1)!

(x+3)2n–1   |  =  | (x+3)2.  1
n+2   | →  0  = L  for all values of  x  so the series  

 converges absolutely for all values of x. 
  

73. Ratio = |  x2(n+1)

(2(n+1))!  
(2n)!
x2n    |  =  |  x2 . 1

(2n+1)(2n+2)   |  → 0 = L   for all values of  x  so the series  

 converges absolutely for all values of x. 
 
Section 10.7  Some Even Answers 
 
2. Conditionally convergent 4. Conditionally convergent 6. Divergent 
 
8. Absolutely convergent 10. Absolutely convergent 12. Conditionally convergent 
 
14. Absolutely convergent 16. Conditionally convergent 18. Divergent 
 
20. Absolutely convergent 22. Absolutely convergent 24. Absolutely convergent 
 
26. Divergent 28. Divergent 30. Divergent 
 
42. L = 1.  Convergent by P–Test. 44. L = 1.  Divergent by P–Test.  
 

46. L = 1/3.  Convergent Geo. series. 48. Divergent by Nth Term Test. 
 
50. L=0.  Convergent by Ratio Test. 52. L = 0.  Convergent by Ratio Test. 
 

54. L = ( 1/3 )2 .  Convergent by Ratio Test. 56. L = 0.64.  Convergent by Ratio Test.   
 
58. Absolutely convergent for  4 < x < 6. 60. Absolutely convergent for  1 < x < 3. 
 
62. Absolutely convergent for all  x. 64. Absolutely convergent for   11/4 < x < 13/4. 
 
66. Absolutely convergent for  2 < x < 4. 68. Absolutely convergent for  –3 < x < –1. 
 
70. Absolutely convergent for all  x. 72. Absolutely convergent for all  x. 
 

74. Absolutely convergent for all  x. 
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Section 10.8  (Odd numbered problem solutions) 
 

1. Ratio test:  |  an+1
an    | =  |  x

n+1

xn    | = | x | → | x | = L.  |x| < 1 if and only if  –1 < x < 1. 

 Endpoints:  if  x = –1 or  x = 1, then the terms do not approach 0 so the series diverges. 

 Interval of convergence:  –1 < x < 1.  (You can provide the graph of this interval.) 
 

3. Ratio test:  |  an+1
an    | =  |  (x+2)n+1

(x+2)n
   | = | x+2 | → | x+2 | = L.  |x+2| < 1 if and only if   

 –1 < x+2 < 1 so –3 < x < –1. 

 Endpoints:  if  x = –3 or  x = –1, then the terms do not approach 0 so the series diverges. 

 Interval of convergence:  –3 < x < –1.  (You can provide the graph of this interval.) 
 

5. Ratio test:  |  an+1
an    | =  |  x

n+1/(n+1)
xn/n

   | = | x. n
n+1   | → | x | = L.  |x| < 1 if and only if  –1 < x < 1. 

 Endpoints: if  x = –1,  then   ∑
n=1

∞
 
xn

n     =   ∑
n=1

∞
 
(–1)n

n    which converges by the Alternating Series Test 

  if  x = 1, then   ∑
n=1

∞
 
xn

n     =   ∑
n=1

∞
 
(1)n

n    which diverges (harmonic series) 

 Interval of convergence:  –1 ≤ x < 1.  (You can provide the graph of this interval.) 
 

7. Ratio test:  |  an+1
an    | =  |  (x+3)n+1/(n+1)

(x+3)n/n
   | = | (x+3). n

n+1   | → | x+3 | = L.  |x+3| < 1 if and only if   

 –1 < x+3 < 1 or  –4 < x < –2. 

 Endpoints: if  x = –4,  then   ∑
n=1

∞
 
(x+3)n

n     =   ∑
n=1

∞
 
(–1)n

n    which converges by the Alternating Series Test 

  if  x = –2, then   ∑
n=1

∞
 
(x+3)n

n     =   ∑
n=1

∞
 
(1)n

n    which diverges (harmonic series) 

 Interval of convergence:  –4 ≤ x < –2.  (You can provide the graph of this interval.) 
 

9. Ratio test:  |  an+1
an    | =  |  (x–7)2(n+1)+1/(n+1)2

(x–7)2n+1/n2    | = | (x–7)2. ( n
n+1  )2  | → (x–7)2 = L.  (x–7)2 < 1 if  

 and only if  –1 < x–7 < 1 or  6 < x < 8. 

 Endpoints: if  x = 6,  then   ∑
n=1

∞
 
(x–7)2n+1

n2     =   ∑
n=1

∞
 
(–1)2n+1

n2    =   ∑
n=1

∞
 
–1
n2   which converges by the P–Test 

  if  x = 8, then   ∑
n=1

∞
 
(x–7)2n+1

n2     =   ∑
n=1

∞
 
(1)2n+1

n2    which converges by the P–Test (p=2). 

 Interval of convergence:  6 ≤ x ≤ 8.  (You can provide the graph of this interval.) 

 



Chapter 10:  Odd Answers Contemporary Calculus 24 

11. Ratio =  | 2x | → | 2x | = L.  | 2x | < 1  if and only if  –1 < 2x < 1  or  –1/2 < x < 1/2. 

 Endpoints: if  x = –1/2, then the series =   ∑
n=1

∞
 ( 2.( –1

2  ) ) n =   ∑
n=1

∞
 ( –1 ) n  which diverges 

  if  x = 1/2, then the series =   ∑
n=1

∞
 ( 2.( 12 ) ) n =   ∑

n=1

∞
 ( 1 ) n  which diverges 

 Interval of convergence:  –1/2 < x < 1/2.  (You can provide the graph of this interval.) 
 

13. Ratio =  | ( x3  )2 | →  |  x
2

9    |  = L.  |  x
2

9    |  < 1  if and only if  –1 <  
x2

9   < 1  or  –3 < x < 3. 

 The series diverges at both endpoints,  x = –3  and  x = 3, so the interval of convergence is  –3 < x < 3. 
 
15. Ratio =  |  2x – 6  | →  |  2x – 6  |  = L.  |  2x – 6  |  < 1  if and only if  –1 < 2x – 6 < 1  or  5/2 < x < 7/2 . 

 The series diverges at both endpoints,  x = 5/2  and  x = 7/2, so the interval of convergence is  5/2 < x < 7/2 . 
 

17. Ratio =  |  n!
(n+1)!  

xn+1

xn    | = | 1
n+1  .x | →  0 = L,  and  L < 1 for all x so the interval of convergence is  

 the entire real number line. 
 

19. Ratio =  |  (n+1)2

n2   
3n

3n+1  
xn+1

xn    | = | ( n+1
n   )2. x3  | → | x3  | = L.   | x3  | < 1  if and only if  –1 < 

x
3  < 1 . 

 The series diverges at both endpoints,  x = –3  and  x = 3, so the interval of convergence is  –3 < x < 3 . 
 

21. Ratio =  |  (n+1)!
n!   

xn+1

xn    | = | (n+1).x | → ∞ > 1  if  x ≠ 0  and  | (n+1).x | → 0 < 1 if  x = 0.   

 The series diverges for  x ≠ 0, and the series converges (and is boring) when  x = 0.  The "interval" of 

convergence is a single point:  {0} . 
 

23. Ratio =  |  (n+1)!
n!   

(x–7)n+1

(x–7)n
   | = | (n+1).(x–7) | → ∞ > 1  if  x ≠ 7  and  | (n+1).(x–7) | → 0 < 1 if  x = 7.   

 The series diverges for  x ≠ 7, and the series converges (and is boring) when  x = 7.  The "interval" of 

convergence is a single point:  {7} . 

25. Ratio =  |  (x–a)n+1

(x–a)n
   | = | x – a | →  | x – a | = L.  | x – a | < 1 if and only if  a – 1 < x < a + 1. 

 The series diverges at both endpoints,  x = a–1  and  x = a+1, so the interval of convergence is  a–1 < x < a+1 . 
 

27. Ratio =  |  (x–a)n+1/(n+1)
(x–a)n/n

   | = | n
n+1  (x–a)  | →  | x – a | = L.  | x – a | < 1 if and only if  a – 1 < x < a + 1. 

 Endpoints: if  x = a–1,  then   ∑
n=1

∞
 
(x–a)n

n     =   ∑
n=1

∞
 
(–1)n

n    which converges by the Alternating Series Test 

  if  x = a+1, then   ∑
n=1

∞
 
(x–a)n

n     =   ∑
n=1

∞
 
(1)n

n    which diverges (harmonic series) 

 Interval of convergence:  a–1 ≤ x < a+1 . 
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29. Ratio =  |  (ax)n+1

(ax)n
   | = | ax | →  | ax | = L.  | ax | < 1 if and only if   

–1
a   < x < 

1
a  . 

 The series diverges at both endpoints,  x = –1/a  and  x = 1/a, so the interval of convergence is  
–1
a   < x < 

1
a  . 

 

31. Ratio =  |  (ax–b)n+1

(ax–b)n
   | = | ax – b | →  | ax – b | = L.  | ax – b | < 1 if and only if  –1 < ax – b ≤ 1  or 

 
b – 1

a    < x < 
b +1

a   . 

 The series diverges at both endpoints so the interval of convergence is  
b – 1

a    < x < 
b +1

a    . 
 

33. We can be certain the friend is wrong because the interval of convergence must be symmetric about the point   

 x = 4, and the friend's interval,  1 < x < 9, is not symmetric about x = 4. 
 
35. (5, 9), [1, 13], (–1, 15], [3, 11), [0, 14), x = 7  are all possible intervals of convegence for the series. 
 
37.  (0, 2), (–5, 7), [1, 1], (–3, 5], [–9, 11], [0, 2), x = 1. 
 
Note:  There are many possible correct answers for problems 38 – 45. 
 

39. ∑
n=1

∞
 
1
n ( 

x
3 ) 

n
 41. ∑

n=1

∞
 
(x – 3)n

3n    =  ∑
n=1

∞
 ( 

x – 3
3  ) 

n
    

 

43. ∑
n=1

∞
 
1
n ( 

x – 5
3  ) 

n
    45. ∑

n=1

∞
  n!.(x – 3)n  

 

47. Interval of convergence:  2 < x < 4.  ∑    =  
1

1 – (x–3)   =  
1

4 – x  . 
 

49. Interval of convergence:  
–1
3   < x < 

1
3  .  ∑    =  

1
1 – 3x   . 

 

51. Interval of convergence:  –1 < x < 1.   ∑    =  
1

1 – x3  

 

53. Interval of convergence:  1 < x < 11.  ∑    =  
1

1 –  
x–6

5
    =  

5
11 – x  . 

 

55. Interval of convergence:  –5 < x < 5.  ∑    =  
1

1 –  
x
5

    =  
5

5 – x  . 

 

57. Interval of convergence:  –2 < x < 2.  ∑    =  
1

1 – (x/2)3
    =   

8
8 – x3   . 

 

59. |  
1
3  cos(x) | < 1 for all  x, so for all x the sum  ∑    =  

1

1 –  
1
3 cos(x)

   =  
3

3 – cos(x)   . 
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Section 10.9  (Odd numbered problem solutions) 
 

1. 
1

1 – x4   =   1 + x4 + x8 + x12 + x16 + ...  =  ∑
n=0

∞
  x

4n   

 

3. 
1

1 + x4   = 1 – x4 + x8 – x12 + x16 + ...  =  ∑
n=0

∞
 (–1) n x4n   

 

5. 
1

5 + x  = 
1
5  . 1

1 + (x/5)   =  
1
5  { 1 – 

x
5   + ( 

x
5  )2 – ( 

x
5  )3 + ( 

x
5  )4 + ...  } = 

1
5  ∑

n=0

∞
 (–1) n ( 

x
5  )n   

 

7. 
x2

1 + x3   =  x2 { 
1

1 + x3  } = x2 { 1 – x3 + x6 – x9 + x12 + ...  } =  x2 ∑
n=0

∞
 (–1) n x3n  =   ∑

n=0

∞
 (–1) n x3n+2  

 

9. ln( 1 + x2 ) =    x2  –  
x4

2    +  
x6

3    –  
x8

4    +  ...  =  ∑
n=1

∞
 (–1) n+1 

x2n

n    

 

11. arctan( x2 ) =   x2 – 
x6

3    +  
x10

5    –  
x14

7    +  
x18

9    – ...  =   ∑
n=0

∞
 (–1) n 

x2(2n+1)

2n+1     =   ∑
n=0

∞
 (–1) n 

x4n+2

2n+1      

  

13. 
1

(1 – x2)2
   =    1 + 2x2 + 3x4 + 4x6 + 5x8 +  ...  =   ∑

n=1

∞
  n.x2(n–1) = ∑

n=1

∞
  n.x2n–2   

 

15.  ⌡⌠
0

0.5
 1
1 – x3   dx  ≈   ⌡⌠

0

0.5
    1 + x3 + x6 + x9 + ...  dx  =  x +  

x4

4    +  
x7

7     +  ... |0.5

0
   ≈  0.516741  

 

17.  ⌡⌠
0

0.6
  ln( 1 + x )  dx  ≈   ⌡⌠

0

0.6
    x  –  

x2

2    +  
x3

3    –  ...  dx  =   
x2

2    –   
x3

2.3
   +   

x4

3.4
   – ... |0.6

0
   =  0.1548 

 

19.  ⌡⌠
0

0.3
 1
(1 – x)2

   dx  ≈  ⌡⌠
0

0.3
    1 + 2x + 3x2 +  ... dx  =  x + x2 + x3 + ...  |0.3

0
   =  0.417 

 

21. lim
x→0 

arctan(x)
x    =  lim

x→0 
 
1
x  { x – 

x3

3    +  
x5

5    –  
x7

7    +  
x9

9    – ...  } =   lim
x→0 

  1 – 
x2

3    +  
x4

5    – ... =  1 

 

23. lim
x→0 

ln(1 + x)
2x    =  lim

x→0 
 

1
2x  {  x  –  

x2

2    +  
x3

3    –  
x4

4    +  ...  } =   lim
x→0 

 
1
2   – 

x
4   +  

x2

6    –  
x3

8   + ...  =  
1
2   

 

25. lim
x→0 

ln(1 – x2)
3x    =  lim

x→0 
 

1
3x  { –  x2 – 

x4

2   – 
x6

3   – 
x8

4   – ... } =   lim
x→0 

  – 
x
3   –  

x3

6    –  
x5

9    – ... = 0 
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27. 
1

1 + x   =  ∑
n=0

∞
 (–1) n xn .  Using the Ratio Test, the ratio = |  x

n+1

xn    | = | x | → | x | = L.  | x | < 1 if and  

 only if  –1 < x < 1.   

 The series diverges at the endpoints  x = –1  and  x = 1  so the interval of convergence is  –1 < x < 1. 
 

29. ln( 1 – x )  =   –  ∑
n=1

∞
 
xn

n    .  Using the Ratio Test, the ratio = |  x
n+1

xn   
n

n+1  | = | x . n
n+1   | → | x | = L.   

 | x | < 1  if and only if  –1 < x < 1.  The series converges when  x = –1  and diverges when  x = 1 so the interval 

of convergence is  –1 ≤ x < 1. 
 

31. arctan( x )  =     ∑
n=0

∞
 (–1) n 

x2n+1

2n+1   .   

 Using the Ratio Test, the ratio = |  x
2(n+1)+1

x2n+1   
2n+1

2(n+1)+1  | = | x2 .  2n+1
2n + 3   | → | x2 | = L.  | x2 | < 1  

 if and only if  –1 < x2 < 1  so  –1 < x < 1 .  The series converges when  x = –1  and when  x = 1 so the interval 

of convergence is  –1 ≤ x ≤ 1. 
 

33. sin(x2) = (x2) – 
(x2)3

3!    + 
(x2)5

5!    – 
(x2)7

7!    + ... = x2 –  
x6

3!   +  
x10

5!    –  
x14

7!    + ...   
 

  = ∑
k=0

∞
  (–1) k 

(x2)2k+1

(2k+1)!   = ∑
k=0

∞
  (–1) k

x4k+2

(2k+1)! 
  

 

35. e(–x2)  = 1 + (–x2) +  
(–x2)2

2!    +  
(–x2)3

3!    +  
(–x2)4

4!    + ... = 1 – x2 +  
x4

2!   –  
x6

3!   +  
x8

4!   + ...  = ∑
k=0

∞
  (–1) k x

2k

k!
  

 

37. cos(x) = D( sin(x) ) =  D( x –  
x3

3!   +  
x5

5!   –  
x7

7!   + ...  ) =  1 –  
x2

2!   +  
x4

4!   –  
x6

6!   + ...  = ∑
k=0

∞
  (–1) k 

x2k

(2k)!   

 
39. Using the result of Problem 33, 
 

 ⌡⌠
0

1
  sin( x2 )  dx =  ⌡⌠

0

1
  x2 –  

x6

3!   +  
x10

5!    –  
x14

7!    + ...   dx  =  
x3

3   –  
x7

3!.7
   +  

x11

5!.11
   –  

x15

7!.15
   + ... |1

0
   

  =  { 
1
3  –  

1
3!.7

   +  
1

5!.11
   –  

1
7!.15

   + ... }  –  { 0 }. 
 

41. lim
x→0 

sin( x )
x    =  lim

x→0 

x – 
x3

3! + 
x5

5! – 
x7

7! + ... 
x    =  lim

x→0 
 1 – 

x2

3!  + 
x4

5!  – 
x6

7!  + ...   =  1 + (all 0s) = 1. 
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Section 10.10  (Odd numbered problem solutions) 
 

1. P(x) = 4x2 – 5x + 7 2. P(x) = 2x3 –  
5
2  x2 + 2x – 1 3. P(x) = 2(x–3)2 + 5(x–3) – 2 

 

5. ln(1 + x ) =  x –  
x2

2    +  
x3

3    –  
x4

4    +  ... 7. arctan( x ) =  x –  
x3

3    +  ... 
 

9. cos( x ) = 1 –  
x2

2!   +  
x4

4!   –  
x6

6!   +  ... 
 

11. sec( x ) = 1 + 
x2

2!   +  
5x4

4!    +  ...  (The higher derivatives of  sec(x)  get  "messy.") 
 

13. Around  c = 1,  ln( x ) = (x–1)  –  
(x–1)2

2    +  
(x–1)3

3    –  
(x–1)4

4    +  ... 
 

15. Around  c = π/2,  sin( x ) = 1  –  
(x – π/2)2

2!    +  
(x – π/2)4

4!    –  
(x – π/2)6

6!    +  ... 
 

17. Around  c = 9,  x   =  3 +  
1

2.3
 (x – 9)   –  

1
4.33 

(x – 9)2
2!    +  

3
8.35 

(x – 9)3
3!   .–  

15
16.37 

(x – 9)4
4!    +  ... 

 
19. Using the first three nonzero terms for cos( x ),   

 P(x) = 1 –  
x2

2!   +  
x4

4!   .  See the Cosine Table. 
 
21. Using the first three nonzero terms for  arctan( x ),   

 P(x) = x –  
x3

3    +  
x5

5   .  See the Arctan Table. 
 

23.  ⌡⌠   sin( x2 ) dx  =  ⌡⌠   x2  –  
x6

6    +  
x10

120     dx  

   =  
x3

3    –  
x7

42   +  
x11

1320    +  C 
 

 ⌡⌠   sin( x3 ) dx  =  ⌡⌠   x3  –  
x9

6    +  
x15

120     dx   

  =  
x4

4    –  
x10

60    +  
x16

1920    +  C 
 

25.  ⌡⌠   e( –x2 ) dx  =  ⌡⌠   1  +  (–x2)  +  
(–x2)2

2    dx  =  ⌡⌠   1  

–  x2  +  
x4

2    dx  =  x  –  
x3

3    +  
x5

10    +  C 
 

 ⌡⌠   e( –x3 ) dx  =  ⌡⌠   1  +  (–x3)  +  
(–x3)2

2    dx  =  ⌡⌠   1  –  x3  +  
x6

2    dx  =  x  –  
x4

4    +  
x7

14    +  C 

x                cos(x)             P(x)

0.1       0.995004165     0.995004167
0.2       0.98006657       0.98006666
0.5       0.87758            0.87604
1          0.54030            0.54167
2        –0.4161            –0.3333

 

x            arctan(x)            P(x)

0.1       0.09966865      0.09966867 
0.2       0.197396          0.197397
0.5       0.4636             0.4646
1          0.7854             0.8667
2          1.1071             5.7333
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27.  ⌡⌠   x sin( x ) dx   =  ⌡⌠   x { x –  
x3

6    +  
x5

120   } dx  =  ⌡⌠   x2 –  
x4

6    +  
x6

120   dx  =  
x3

3    –  
x5

30   +  
x7

840    +  C 

 

 ⌡⌠   x2 sin( x ) dx  =  ⌡⌠   x2 { x –  
x3

6    +  
x5

120   } dx  =  ⌡⌠   x3 –  
x5

6    +  
x7

120   dx  =  
x4

4    –  
x6

36   +  
x8

960    +  C 

 

29. lim
x→0 

1 – cos(x)
x2    =  lim

x→0 

1 – {  1 –  
x2

2!  +  
x4

4!  –  
x6

6!  +  ... }

x2     

  =  lim
x→0 

  
x2

2!  –  
x4

4!  +  
x6

6!  –  ... 

x2     =  lim
x→0 

1
2!   –  

x2

4!   +  
x4

6!   –  ...  =  
1
2   .     

 

31. lim
x→0 

1 – ex

x    =  lim
x→0 

1 – { 1 + x + 
x2

2!  +  
x3

3!  + ... }
x     

  =  lim
x→0 

– x – 
x2

2!  –  
x3

3!  – ... 
x     =  lim

x→0 
 – 1 – 

x
2!   –  

x2

3!   – ... =  –1   

 

33. lim
x→0 

sin(x)
x     =  lim

x→0 

x  –  
x3

3!  +  
x5

5!  –  ...
x     =  lim

x→0 
 1  –  

x2

3!   +  
x4

5!   –  ...  =  1 

 

35. lim
x→0 

x – 
x3

6   –  sin(x)

x5    =  lim
x→0 

x – 
x3

6   –  { x  –  
x3

3!  +  
x5

5!  –  
x7

7!  ...}
x5      

 

  =  lim
x→0 

–  
x5

5!  +  
x7

7!  ...

x5    =  lim
x→0 

 –  
1
5!   +  

x2

7!   ...   =  –  
1

120    

 

37. sinh( x ) =  
1
2 ( ex – e–x )   =  

1
2 ( { 1 + x + 

x2

2!  +  
x3

3!  +  
x4

4!  + ...}  –  { 1 – x + 
x2

2!  –  
x3

3!  +  
x4

4!  + ... } )  
 

  =  
1
2 ( 2x + 2 

x3

3!  + 2 
x5

5!  +  2 
x7

7!  +  ...  )  =  x +  
x3

3!   +  
x5

5!   +  
x7

7!   +  ... 
 

39. D( x +  
x3

3!   +  
x5

5!   +  
x7

7!   +  ... )  =  1 +  3 
x2

3!   +  5 
x4

5!   +  7 
x6

7!   +  ...  =  1 +  
x2

2!   +  
x4

4!   +  
x6

6!   +  ... 
 
41. eix = cos(x) + i.sin(x) .  When  x = π/2,  then  eix = ei( π/2 ) = cos( π/2 ) + i.sin( π/2) = i . 
 
 If  x = π,  then  eix = eπi = cos( π ) + i.sin( π) = –1 .  This result is often restated in the form 
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 eπi + 1 = 0,  a formula that relates the  5  most common constants in all of mathematics, e, π, i, 1, and 0. 
 

43. ( )3
0   =  1  (by the definition),  ( )3

1   =  
3!

1!.2!
   =  

3.2.1
(1).(2.1)

   = 3,   

 

 ( )3
2   =  

3!
2!.1!

   =  
3.2.1

(2.1).(1)
   = 3,  and   ( )3

3    =  
3!

0!.3!
   =  

3.2.1
(1).(3.2.1)

   = 1. 

 
45. The Maclaurin series for  (1 + x)5/2  is 
 

 1  +  
5
2  x  + ( 

5
2  )( 

3
2  ) 

x2

2!   + ( 
5
2  )( 

3
2  )( 

1
2  ) 

x3

3!   + ( 
5
2  )( 

3
2  )( 

1
2  )( 

–1
2   ) 

x4

4!   + ( 
5
2  )( 

3
2  )( 

1
2  )( 

–1
2   )( 

–3
2   ) 

x5

5!   + ... 
 
47. If  f(x) = (1 + x)m , then  f(0) = 1.  f '(x) = m(1 + x)m–1  so  f '(0) = m.   

 f "(x) = m(m–1)(1 + x)m–2  so  f "(0) = m(m–1).  f "'(x) = m(m–1)(m–2)(1 + x)m–3   

 so  f "'(0) = m(m–1)(m–2).  f (4)(x) =  m(m–1)(m–2)(m–3_(1 + x)m–4  so  f "'(0) = m(m–1)(m–2)(m–3).  

 And so on.  Then the Maclaurin series for  (1 + x)m   is 
 

 1 + mx + m(m–1) 
x2

2!   +  m(m–1)(m–2) 
x3

3!   +  m(m–1)(m–2)(m–3) 
x4

4!   + ... 
 
 
 
Section 10.11  (Odd numbered problem solutions) 
 
1. f(x) = sin(x), c = 0, [ –2, 4]:  f '(x) = cos(x), f "(x) = –sin(x), f '''(x) = –cos(x), f (iv)(x) = sin(x)  so 
 a0 = 0, a1 = 1, a2 = 0, a3 = –1/6, a4 = 0.  Then  P0(x) = 0 , P1(x) = 0 + x = x ,  

 P2(x) = 0 + x + 0 = x , P3(x) = 0 + x + 0 – x3/6 =  x – x3/6 , 

 and  P4(x) =  0 + x + 0 – x3/6 + 0 =  x – x3/6 .   
 

3. f(x) = ln(x), c = 1, [0.1, 3]:  f '(x) = 1/x , f "(x) = –1/x2 , f '''(x) = 2/x3 , f (iv)(x) = –6/x4  so  
 (using c = 1)  a0 = 0 , a1 = 1 , a2 = –1/2 , a3 = 1/3 , a4 = –1/4.  Then  P0(x) = 0 , P1(x) = (x – 1) , 

P2(x) = (x – 1) – 
1
2 (x – 1) 2  , P3(x) = (x – 1) – 

1
2 (x – 1) 2 + 

1
3 (x – 1) 3  , and  

 P4(x) = (x – 1) – 
1
2 (x – 1) 2 + 

1
3 (x – 1) 3 – 

1
4 (x – 1) 4  .   

 

5. f(x) =  x   =  x1/2 , c = 1, [ 1, 3]:  f '(x) = 
1
2  x–1/2  , f "(x) = 

–1
4   x–3/2  , f '''(x) = 

3
8  x–5/2  , and 

 f (iv)(x) = 
–15
16   x–7/2   so   a0 = 1 , a1 = 

1
2  , a2 = – 

1
8  , a3 = 

1
16  , a4 = 

–5
128  .  Then  P0(x) = 1 ,  

 P1(x) = 1 + 
1
2 (x – 1)   , P2(x) = 1 + 

1
2 (x – 1)  – 

1
8 (x – 1) 2    ,  

 P3(x) = 1 + 
1
2 (x – 1)  – 

1
8 (x – 1) 2 + 

1
16 (x – 1) 3  ,  and   

 P4(x) = 1 + 
1
2 (x – 1)  – 

1
8 (x – 1) 2 + 

1
16 (x – 1) 3 – 

5
128 (x – 1) 4   .  



Chapter 10:  Odd Answers Contemporary Calculus 31 

 
 

7. f(x) = (1 + x)–1/2 , c = 0, [ –2, 3]:  f '(x) = 
–1
2  (1 + x) –3/2 , f "(x) = 

3
4 (1 + x) –5/2 ,  

 f '''(x) = 
–15

8  (1 + x) –7/2   , f (iv)(x) = 
105
16  (1 + x) –9/2    so  a0 = 1 , a1 = 

–1
2   , a2 =  

3
8  , a3 = 

–5
16  ,  

 and  a4 = 
35
128  .  Then  P0(x) = 1 , P1(x) = 1 – 

1
2  x   , P2(x) = 1 – 

1
2  x + 

3
8   x2  ,  

 P3(x) = 1 – 
1
2  x + 

3
8   x2 – 

5
16   x3   ,  and    P4(x) = 1 – 

1
2  x + 

3
8   x2 – 

5
16   x3 + 

35
128   x4  . 

 

9. f(x) = sin(x), c = π/2, [ –1, 5]:  f '(x) = cos(x) , f "(x) = –sin(x) , f '''(x) = –cos(x) , f (iv)(x) = sin(x)  so  
(using c = π/2) a0 = 1 , a1 = 0 , a2 = –1/2 , a3 = 0 , a4 = 1/4!  .  Then  P0(x) = 1 , P1(x) = 1 ,  

 P2(x) = 1 – 
1
2 (x – 

π
2 ) 2   , P3(x) = 1 – 

1
2 (x – 

π
2 ) 2   , and  P4(x) = 1 – 

1
2 (x – 

π
2 ) 2 + 

1
4! ( x – 

π
2 ) 4   . 

 

11. f(x) = sin(x), c = 0, n = 5, –π/2 ≤ x ≤ π/2:  R5(x) =  
f(6)( z )

6!  (x – c) 6 =  
f(6)( z )

720   x6   for some  z  between  

x  and 0. 
 

 | R5(x) |  ≤ 
 | –sin( z ) | 

720    |x|6  ≤  
1

720 ( 
π
2 ) 6  ≈  0.02086 . 

 

13. same as problem 11 except  –π ≤ x ≤ π :  R5(x) =  
f(6)( z )

6!  (x – c) 6 =  
f(6)( z )

720   x6   for some   

 z  between  x  and 0.  | R5(x) |  ≤ 
 | –sin( z ) | 

720    |x|6  ≤  
1

720 ( π ) 6  ≈  1.335 . 
 

15. f(x) = cos(x), c = 0, n = 10, –1 ≤ x ≤ 2:  R10(x) =  
f(11)( z )

11!  (x – c) 11 =  
 sin( z ) 

11!   x11   for some  z  

between  x  and 0.  | R10(x) | =  
 | sin( z ) | 

11!   x11  ≤  
1

11! ( 2 ) 11 =  
2048

39916800   ≈ 0.000051 . 
  

 Since the only nonzero terms of the power series for  f(x) = cos(x)  (about c = 0) are the even powers of  
x,  P10 is the same as P11  so we could use the error term for  P11 instead of the one for  P10.  The 

advantage of using the  P11  error term is that we have a larger factorial in the denominator of  R11 and 

get a smaller bound on the error of the approximation. 
 

 Taking  n = 11, –1 ≤ x ≤ 2:  R11(x) =  
f(12)( z )

12!  (x – c) 12 =  
 | cos( z ) | 

12!   x12   for some  z  between  x  

and 0.  | R11(x) | =  
 | cos( z ) | 

12!   x12  ≤  
1

12! ( 2 ) 12 =  
4096

479001600   ≈ 0.00000855 . 
 

17. f(x) = ex, c = 0, n = 6, –1 ≤ x ≤ 2:  R6(x) =  
f(7)( z )

7!  (x – c) 7 =  
f(7)( z )

5040   x7   for some  z  between  x  and 

0.  Using the estimate  e < 3, | R6(x) | = 
 | ez | 

7!   |x|7  <  
32

7! ( 2 ) 7 =  
1152
5040   ≈  0.2286 . 
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19. f(x) = sin(x), c = 0,  [ –1, 1], E = "error" = 0.001.  The derivatives of  sin(x)  are  ±sin(x)  or  ±cos(x)  and 

all of them have maximum absolute value less than or equal to 1. 

 | Rn(x) |  =  
 | f(n+1)( z ) | 

(n+1!)   |x – c|n+1 ≤  
1

(n+1)!   |1|n+1  =  
1

(n+1)!    so we want to find a value of  n  

that makes  
1

(n+1)!   ≤ 0.001 .  It is difficult to solve  factorial equations algebraically, but a 

"calculator investigation"  shows that  
1

(5+1)!   =  
1

720   ≈  0.00139 > 0.001,  and  

 
1

(6+1)!   =  
1

5040   ≈  0.000198 < 0.001  so we should use  n = 6.  That means we need to use the 3 

terms involving  x, x3 and x5. 
 

21. f(x) = sin(x), c = 0,  [ –1.6, 1.6], E = "error" = 0.00001.  The derivatives of  sin(x)  are  ±sin(x)  or  

±cos(x)  and all of them have maximum absolute value less than or equal to 1.   

 | Rn(x) |  =  
 | f(n+1)( z ) | 

(n+1!)   |x – c|n+1 ≤  
1

(n+1)!   |1.6|n+1  =  
1

(n+1)!( 1.6 ) n+1 so we want to find a 

value of  n  that makes   
1

(n+1)!( 1.6 ) n+1 ≤ 0.00001 .  Some calculator investigation shows that   

1
(9+1)!( 1.6 ) 9+1 ≈  0.00003 > 0.00001  and   

  
1

(10+1)!( 1.6 ) 10+1 ≈ 0.0000044 < 0.00001  so we should use  n = 10.  That means we need to use 

the 5 terms involving  x, x3, x5, x7 and  x9. 

 
 

23. f(x) = ex, c = 0, [ 0, 2], E = "error" = 0.001.  The derivatives of  ex  are all  ex . 
 

  | Rn(x) |  =  
 | f(n+1)( z ) | 

(n+1!)   |x – c|n+1 ≤  
 | ez | 
(n+1!)  |x|n+1  ≤  

 32 
(n+1)!  ( 2 ) n+1  (using  e < 3). 

 Some calulator investigation shows    
 32 

(9+1)!  ( 2 ) 9+1 ≈ 0.0025 > 0.001  and    

  
 32 

(10+1)!  ( 2 ) 10+1  ≈ 0.00046 < 0.001  so we should use  n = 10.   (Using a better upper bound for 

the value of  e  such as  2.75 or 2.72  does not change the conclusion:  use n = 10.) 
 

25. (a) 4{ 1 –  
1
3   + 

1
5  – 

1
7  + 

1
9  } ≈  4{ 0.83492063 } = 3.33968252  compared with  π ≈ 3.14159265 

from a calculator. 

 (b) Let  A = 4{ 1 – 
1
3  + 

1
5  – 

1
7  + ... – 

1
99  } .  Then  | A – π | < | 51st term | = 

4
101   ≈ 0.0396. 

 (c) Let  B = 4{ 1 – 
1
3  + 

1
5  – 

1
7  + ... ± 

1
2n – 1  } .   

  Then  | B – π | < | next term | = 
4

2(n+1) – 1   =  
4

2n + 1   .  We want  
4

2n + 1   ≤ 0.0001  so   

  n ≥ 1999.5.  Take  n = 2000 terms to get the precision we want. 
 
 



Chapter 10:  Odd Answers Contemporary Calculus 33 

27. (a) A: Put  C = 16.arctan( 
1
5  ) – 4.arctan( 

1
239  ) 

   = 16{ 
1
5  – ( 

1
3  )( 

1
5  )3 + ( 

1
5  )( 

1
5  )5 } – 4{ 

1
239  – ( 

1
3  )( 

1
239  )3 + ( 

1
5  )( 

1
239  )5 } 

   ≈  16{ 0.197397333333 } – 4{ 0.004184076002 } = 3.14162102879 .   

   ( C – π ≈ 0.0000284 .) 

 (b) Formula A converges more rapidly than Methods I and II because we are using smaller values 

of  x,  x = 1/5  and x = 1/239,  and the powers of these smaller values of  x  approach  0  more 

quickly than the values of  x,  x = 1 and  x = 1/2  and  x = 1/3,  used in Methods I and II. 
 


