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10.4 POSITIVE TERM SERIES:  INTEGRAL TEST & P–TEST 
 

This section discusses two methods for determining whether some series are convergent.  The first, the 

integral test, says that a given series converges if and only if a related improper integral converges.  This lets 

us trade a question about the convergence of a series for a question about the convergence of an improper 

integral.  The second convergence test, the P–test, says that the convergence of one particular type of series, 

the sum  

! 

 
1

k
p

k=1

"

#  , depends only on the value of  p.  These tests only apply to series whose terms are 

positive.  And, unfortunately, the tests only tell us if the series converge or diverge, but they do not tell us the 

actual sum of the series. 
 

The Integral Test is the more fundamental and general of the two tests examined in this section, and it is used 

to prove the P–Test.  The P–Test, however, is easier to apply and is likely to be the test you use more often. 

 
Integral Test 
 
 

A series can be thought of as a sum of areas of rectangles 

each having a base of one unit (Fig. 1).  With this area 

interpretation of series there is a natural connection between 

series and integrals and between the convergence of a series 

and the convergence of an appropriate improper integral.   
 

Example 1: Suppose the shaded region in Fig. 2a can be painted using 3 gallons of paint.  How much 

paint is needed for the shaded region in Fig. 2b?   
 

Solution: We don't have enough 

information to determine the exact 

amount of paint needed for the 

region in Fig. 2b, but the total of the 

rectangular areas is smaller than the 

area in Fig. 2a so less than 3 gallons 

of paint are needed for the region in Fig. 2b. 
 
 

Practice 1:  Suppose the area of the shaded 

region in Fig. 3a is infinite.  What 

can you say about the total area of 

the rectangular regions in Fig. 3b? 
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The geometric reasoning used in Example 1 and Practice 1  can also be used to determine the convergence 

and divergence of some series. 
 

Example 2: (a) Which is larger:    

! 

 
1

k
2

k=2

"

#   or     ⌡⌠

1

∞
 
1
x2  dx  ?    

  

 (b)  Use the result of (a) to show that  

! 

 
1

k
2

k=2

"

#   is convergent. 

 
 

Solution: Fig.  4  illustrates that the area of the rectangles,  
1
22  + 

1
32  + 

1
42  + ... + 

1
n2  , is less than the area 

under the graph of the function  f(x) = 
1
x2   for  1 ≤ x ≤ n :  

  

! 

 
1

k
2

k=2

n

"   <  ⌡⌠

1

n
  

1
x2  dx   so  

! 

 
1

k
2

k=2

n

"   <   ⌡⌠

1

∞
  

1
x2  dx   =  1  for every n 

! 

" 2.   

 Therefore, the partial sums of  

! 

 
1

k
2

k=2

"

#   are bounded.  Also, each term  ak =  
1
k2   is positive, so the 

partial sums of  

! 

 
1

k
2

k=2

"

#   are monotonically increasing.  So, by the Monotonic Theorem of Section 

10.1, the sequence of partial sums converges, so the series  

! 

 
1

k
2

k=2

"

#   is convergent. 
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The reasoning of Example 2 can be extended to the comparison of other series and the appropriate integrals. 
 
 
 Integral Test 
 
 Suppose  f  is a continuous, positive, decreasing function  on  [1, ∞)  and  ak = f(k).   
 

 The series   ∑
k=1

∞
 ak    converges  if and only if   the integral   ⌡⌠

1

∞
 f(x) dx   converges. 

 

 Equivalently, (a) if   ⌡⌠

1

∞
 f(x) dx   converges,  then   ∑

k=1

∞
 ak    converges, 

  and (b) if  ⌡⌠

1

∞
 f(x) dx   diverges,  then   ∑

k=1

∞
 ak    diverges.      

 
The proof is simply a careful use of the reasoning in the previous Examples. 
 
Proof: Assume that  f  is a continuous, positive, decreasing function  on  [1, ∞)  and that  ak = f(k).   

 

Part (a):  Assume that   ⌡⌠

1

∞
 f(x) dx   converges: 

! 

lim
n"#

f(x) dx

1

n

$  is a finite number . 

 
 Since each  ak > 0, the sequence of partial sums  sn  is  

 increasing.  If we arrange the rectangles under the graph  

 of  f  as in Fig. 5, it is clear that   

sn  = ∑
k=1

n
 ak  = a1 + ∑

k=2

n
 ak  ≤  a1 + ⌡⌠

1

n
 f(x) dx   ≤  a1 + ⌡⌠

1

∞
 f(x) dx   .  

 

  
{ sn }  is a bounded, increasing sequence so, by the  

 Monotone Convergence Theorem of Section 10.1,  { sn }   

 converges  and     ∑
k=1

∞
 ak   is convergent. 
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Part (b):  Assume that   

! 

f(x) dx

1

"

#    diverges:   

! 

lim
n"#

f(x) dx

1

n

$  = ∞ . 

If we arrange the rectangles under the graph of  f  as in Fig. 6, it is clear that   
 

sn  =  ∑
k=1

n
 ak    ≥  ⌡⌠

1

n+1
 f(x) dx    for all  n,   

so    

! 

lim
n"#

 sn  ≥  

! 

lim
n"#

f(x) dx

1

n

$   = ∞ . 

In other words,   

! 

lim
n"#

 sn  =  ∞    and   ∑
k=1

∞
 ak    diverges. 

 
The inequalities in the proof relating the partial sums of the  

series to the values of integrals are sometimes used to approximate  

the values of the partial sums of a series: 

 

   ⌡⌠

1

n+1
 f(x) dx   ≤  ∑

k=1

n
 ak    ≤  a1  +  ⌡⌠

1

n
 f(x) dx  . 

 

We can use this last set of inequalities with  ak = 
1
k   and  n = 1,000  to conclude that 

 

   ⌡⌠

1

103+1

 
1
x dx   ≤  ∑

k=1

103

 
1
k    ≤  1  +  ⌡⌠

1

103

 
1
x dx    so   7.48646986155 ≤  ∑

k=1

103

 
1
k    ≤  8.48547086055 . 

 

( If  n = 1,000,000, then the same type of reasoning shows that the partial sum of  1/k  from  k = 1  to   

k = 106  is between  13.815511  and  14.815510 . ) 

If the series does not start with  k = 1, a Corollary of the Integral Test can be used.   

 
 
Corollary: If       f  satisfies the hypotheses of the Integral Test  on  [N, ∞)  and  ak = f(k),  
 

 then      ∑
k=N

∞
 ak    and   ⌡⌠

N

∞
 f(x) dx      both converge or both diverge. 

 

Example 3: Use the Integral Test to determine whether  (a)  

! 

 

k=1

"

#
1

k
3

  and  (b)  

! 

 
1

k " ln(k)
k=2

#

$   converge. 
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Solution:  (a)  If  f(x) =  
1
x3   , then  ak = f(k)  and  f is continuous, positive and decreasing on  [1, ∞). 

Then   ⌡⌠

1

∞
 1
x3   dx  =  

! 

lim
n"#

 
1

x
3

1

n

$  dx =  

! 

lim
n"#

$
1

2x
2

% 

& 
' 

( 

) 
* |

n

1
    

 =  

! 

lim
n"#

$
1

2n
2

% 

& 
' 

( 

) 
* – ( – 

1

2.12  )    =  
1
2  . 

 

The integral    ⌡⌠

1

∞
 1
x3   dx   converges  so the series   ∑

k=1

∞
 1
k3    converges. 

 

(b)  If  f(x) =  
1

x.ln(x)
   , then  ak = f(k)  and  f is continuous, positive and decreasing on  [2, ∞). 

 

Then   ⌡⌠

2

∞
 1

x.ln(x)
   dx  =  

! 

lim
n"#

 
1

x $ ln(x)
2

n

%  dx =  

! 

lim
n"#

 ln( ln(x) )|
n

2
    

 =  

! 

lim
n"#

 ln( ln(n) ) – ln( ln(2) )  =  ∞ . 

The integral    

! 

 
1

x " ln(x)
2

#

$  dx    diverges  so the series    

! 

 
1

k " ln(k)
k=2

#

$   diverges. 

 

Practice 2: Use the Integral Test to determine whether  (a)  

! 

 

k=4

"

#
1

k

  and  (b)  

! 

 

k=1

"

# e
$k   converge. 

 

Note: The Integral Test does not give the value of the sum, it only answers the question of whether the series 

converges or diverges.  Typically the value of the improper integral is not equal to the sum of the series. 

 

P–Test  for Convergence of  

! 

  

k=1

"

#
1

k
p

       

 

The P–Test is very easy to use.  And it answers the convergence question for a whole family of series. 

 
 
 P–Test 
 

   The series  

! 

 
1

kp
k=1

"

#        


 converges if   p > 1
  
 diverges if   p ≤ 1  .
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Proof:   If  p = 1, then  ∑
k=1

∞
  

1
kp    =  ∑

k=1

∞
  

1
k    , the harmonic series, which we already know diverges  (by 

 Section 10.3  or, using the Integral Test, since     ⌡⌠

1

∞
 
1
x  dx  diverges to infinity.) 

 

The proof for  p ≠ 1  is a straightforward application of the Integral Test on  f(x) = 1/xp . 
 

If  p ≠ 1, then    ⌡⌠

1

∞
  

1
xp  dx  =  ⌡⌠

1

∞
   x–p  dx =  

! 

lim
A"#

  

1

A

$ x–p  dx   

 =  

! 

lim
A"#

 
1

1$ p

% 

& 
' 

( 

) 
* .x1–p  |

A

1   

 =  

! 

lim
A"#

 
1

1$ p

% 

& 
' 

( 

) 
* .A1–p  – ( 

1
1–p  ).1  

 

As we examine the limit of  A1–p,  there are two cases to consider:  p < 1  and  p > 1. 
 

If  p < 1,  then  1 – p > 0  so  A1–p  approaches infinity  as  A  approaches infinity.  Then      

 ⌡⌠

1

∞
  

1
xp  dx   diverges, so, by the Integral Test,    ∑

k=1

∞
  

1
kp    diverges. 

 

If  p > 1,  then  p – 1 > 0  and  A1–p  =  
1

Ap–1   approaches  0  as  A  approaches infinity.  Then      

 ⌡⌠

1

∞
  

1
xp  dx   converges, so, by the Integral Test,    ∑

k=1

∞
  

1
kp    converges. 

 

Example 3: Use the P–Test to determine whether  (a)  

! 

 

k=1

"

#
1

k
2

  and  (b)  

! 

 

k=4

"

#
1

k

  converge. 

  

Solution: The convergence of both series have already been determined using the Integral Test, but the 

P–Test is much easier to apply. 
 

 (a)  p = 2 > 1  so    

! 

 

k=1

"

#
1

k
2

  converges.          (b)  p = 1/2 < 1  so    

! 

 

k=4

"

#
1

k

  diverges. 

 

The P–Test is very easy to use (Is the exponent  p > 1  or is  p ≤ 1?), and it is also very useful.  In the next 

section we will compare new series with series whose convergence we already know, and most often this 

comparison is with some P–series whose convergence we know about from the P–Test. 
 

Note: The P–Test does not give the value of the sum, it only answers the question of whether the 

series converges of diverges. 
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PROBLEMS 
 
In problems 1 – 15  show that the function determined by the terms of the given series satisfies the  

hypotheses of the Integral Test, and then use the Integral Test to determine whether the series converges  

or diverges. 
 

1. 

! 

 

k=1

"

#
1

2k + 5

 2. 

! 

 

k=1

"

#
1

(2k + 5)
2

 3. 

! 

 

k=1

"

#
1

(2k + 5)
3/2

 

 

4. 

! 

 
ln(k)

k
k=1

"

#  5. 

! 

 
1

k " ( ln(k) )
2

k=2

#

$  6. 

! 

 
1

k
2

k=1

"

# $ sin
1

k

% 

& 
' 
( 

) 
*  

 

7. 

! 

 

k=1

"

#
1

k
2

+1

 8. 

! 

 

k=1

"

#
1

k
2

+100

 9. 

! 

 
1

k
"

1

k + 3

# 
$ 
% 

& 
' 
( 

k=1

)

*  

 

10. 

! 

 
1

k
"

1

k +1

# 
$ 
% 

& 
' 
( 

k=1

)

*   11. 

! 

 

k=1

"

#
1

k(k + 5)
 12. 

! 

 

k=2

"

#
1

k
2 $1

 

 

13. ∑
k=1

∞
   k .e–(k2)   14. ∑

k=1

∞
  k2 .e–(k3)   15. 

! 

 

k=1

"

#
1

6k +10

 

 

For problems 16 – 20, (a)  use the P–Test to determine whether the given series converges, and then (b) use 

the Integral Test to verify your convergence conclusion of part (a). 
 

16. 

! 

 
1

k
2

k=1

"

#  17. 

! 

 
1

k
3

k=1

"

#  18. 

! 

 
1

k
k=2

"

#  

 

19. 

! 

 
1

k
k=2

"

#  20. 

! 

 
1

k
2 /3

k=3

"

#  21. 

! 

 
1

k
3/2

k=3

"

#  

 

In the proof of the Integral Test, we derived an inequality bounding the values of the partial sums  sn =  ∑
k=1

n
 ak   

between the values of two integrals:    ⌡⌠

1

n+1
 f(x) dx   ≤  ∑

k=1

n
 ak    ≤  a1  +  ⌡⌠

1

n
 f(x) dx  .  For problems  22 – 27,  use this 

inequality to determine bounds on the values of  s10, s100, and s1,000,000  for the given series. 
 

22. 

! 

 
1

k
2

k=1

"

#  (Note: The exact value of  ∑
k=1

∞
 1
k2    is  

π2

6    but it beyond our means to prove that in this course.)  
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23. 

! 

 
1

k
3

k=1

"

#  24. 

! 

 
1

k
k=1

"

#  25. 

! 

 
1

k +1000
k=1

"

#   

 

26. 

! 

 
1

k
2

+1
k=1

"

#  27. 

! 

 
1

k
2

+100
k=1

"

#    

 

 

 
28. Euler's Constant: Define  g1 = 1 – ln(1) = 1,   

 g2 = (1 + 
1
2  ) – ln(2) ≈ 0.806853,   

 g3 = (1 + 
1
2  + 

1
3  ) – ln(3) ≈ 0.734721, and, in general,   

           gn = ( 1 + 
1
2  + 

1
3  + 

1
4  + ... + 

1
n  ) – ln(n) . 

(a) Make several copies of Fig. 7, and shade the  
 regions represented by  g2 , g3 , g4 , and  gn . 

(b) Provide a geometric argument that  gn > 0 for  

    all  n ≥ 1. 
(c) Provide a geometric argument that  { gn }  is monotonically decreasing:   gn+1 < gn  for all n ≥ 1. 

(d) Conclude from parts (b) and (c) and the Monotone Convergence Theorem (Section 10.1)  that  { gn }  

converges. 

 

(Note: The value to which { gn }  converges is denoted by  "γ,"  the lower case Greek letter gamma, and is 

called Euler's constant.  It is not even known if  γ  is a rational number.   γ ≈ 0.5772157 ...  .) 

 

29. (a) Show that the integral   ⌡⌠

2

∞
  

1

x.(ln x)q
  dx     converges for  q>1  and diverges for  q ≤ 1. 

 (b) Use the result of part (a) to state a "Q test" for   

! 

 
1

k " (ln k)q
k=2

#

$ . 

 

In problems 30 – 33, use the result of Problem 29 to determine whether the given series converge. 
 

30. 

! 

 
1

k " ln(k)
k=2

#

$  31. 

! 

 
1

k " (ln k)
3

k=2

#

$  32. 

! 

 
1

k " lnk
k=2

#

$   33. 

! 

 
1

k " ln(k
3
)

k=2

#

$   
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Practice Answers 

 

Practice 1: { total area of rectangular pieces } > { area under the curve in Fig. 3a }  so if the shaded 

area in Fig. 3a is infinite, then the shaded area in Fig. 3b is also infinite. 

 

Practice 2: (a) Let  f(x) =  
1
x   .  Then  ak = f(k)  and  f is continuous, positive and decreasing on  [1, ∞). 

Then   ⌡⌠

4

∞
 4

x   dx  =  

! 

lim
n"#

 
1

x
1

n

$  dx =  

! 

lim
n"#

 2 x1/2|
n

4
    

 =  

! 

lim
n"#

 2 n   – 2 4    =  ∞ . 

The integral    ⌡⌠

4

∞
 1

x   dx   diverges  so the series  

! 

 
1

k
k=4

"

#   diverges. 

(Note:  It will be easier to determine that this series diverges by using the P–Test which 

occurs right after this Practice problem in the text.) 

 
 (b) Let  f(x) = e–x .  Then  e–k = ak = f(k)  and  f is continuous, positive and decreasing on  [1, ∞). 
 

Then   ⌡⌠

1

∞
  e–x  dx  =  

! 

lim
n"#

 

1

n

$ e–x  dx   =  

! 

lim
n"#

 –e–x|
n

1
   =  

! 

lim
n"#

 $e
$n( ) $ $e

$1( )  

 =  

! 

lim
n"#

 $
1

e
n

% 

& 
' 

( 

) 
* $ $

1

e

% 

& 
' 

( 

) 
*   =  

1
e   ≈  0.368 . 

The integral   ⌡⌠

1

∞
  e–x  dx    converges  so the series    ∑

k=1

∞
  e–k    converges. 

 

 

 

 

 

 


