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10.10 TAYLOR AND MACLAURIN SERIES 
 
This section discusses a method for representing a variety of functions as power series, and power series  

representations are derived for  sin(x), cos(x), ex, and several functions related to them.  These power series 

are used to evaluate the functions and limits and to approximate definite integrals. 
 

We start with an examination of how to determine the formula for a polynomial from information about the 

polynomial when  x = 0, and then this process is extended to determine a series representation for a 

function from information about the function when  x = 0. 
 

Polynomials 
 
Polynomials are among the easiest functions to work with, and they have a variety of "nice" properties  

including the following: 
 

The values of  P(x) and its derivatives at  x = 0 completely determine the formula for  P(x). 
 

If the values of  P(x)  and all of its derivatives at  x = 0  are known, then we can use those values to  

find a formula for P(x). 

 
Example 1: Suppose  P(x)  is a cubic polynomial with  P(0) = 7, P '(0) = 5, P "(0) = 16, and  

 P '''(0) = 18.  (Since  P(x) is a cubic, its higher derivatives are all  0.)  Find a formula for  P(x). 
 

Solution: Since  P(x)  is a cubic polynomial, then  P(x) = a0  + a1x + a2x2 + a3x3  for some numbers 

 a0 , a1 , a2 , and a3 .  We want to find the values of those numbers, and we can do so by 

 substituting  0  for  x  in the expressions for  P, P ', P ", and  P "'  and using the given information. 
 

 7 = P(0) = a0  + a1
.0 + a2

.02 + a3
.03  = a0  so  a0 = 7. 

  

 P '(x) = a1 + 2a2x + 3a3x2.  5 = P '(0) = a1 + 2a2
.0 + 3a3

.02 = a1   so  a1 = 5 . 
 

 P ''(x) = 2a2 + 6a3x.  16 = P ''(0) = 2a2 + 6a3
.0 = 2a2   so  a2 = 16/2 = 8 . 

 
 P '''(x) = 6a3.  18 = P ''(0) = 6a3    so  a3 = 18/6 = 3 . 

 

 P(x) = 7 + 5x + 8x2 + 3x3 .  You should verify that this cubic polynomial and its derivatives  

 have the values specified in the problem. 

 
Practice 1: Suppose  P(x)  is a 4th degree polynomial with  P(0) = –3, P '(0) = 4, P "(0) = 10,  

 P '''(0) = 12, and  P(4)(0) = 24.  (Since  P(x) is a 4th degree polynomial, the higher 

derivatives are all  0.)  Find a formula for  P(x). 
 
For polynomials, the nth derivative evaluated at  x = 0  is  P(n)(0) = (n)(n–1)(n–2)...(2)(1) an  = n!.an  ,   so 

the coefficient  an of the nth term of the polynomial is   an = P(n)(0)/n! .   
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Series 
 

In many important ways power series behave like polynomials, very big polynomials, and this is one of 

those ways.  The next result says that if a function can be represented by a power series, then the 

coefficients of the power series just depend on the values of the derivatives of the function evaluated at  0. 

 
 
 Maclaurin Series for  f(x) 
 

 If  a function  f(x)  has a power series representation   f(x) = ∑
n=0

∞
  anxn   for  | x | < R 

 then  the coefficients are given by  an =  
 f(n)(0)

n!    . 
 
 The Maclaurin Series for  f(x)  is 
 

  f(x) = ∑
n=0

∞
 
 f(n)(0)

n!   xn   =  f(0)  +  f '(0).x  +  
f ''(0)

2!   .x2  +  
f '''(0)

3!   .x3  +  ... +  
f(n)(0)

n!   .xn + ... 

    
 

Proof: Suppose  f(x) = ∑
n=0

∞
  anxn  = a0 + a1x + a2x2 + a3x3 + ... + anxn + ...  for  | x | < R. 

 

 Then  f(0) = a0 + a1
.0 + a2

.02 + a3
.03 + ... + an

.0n + ...  = a0   so  a0 = f(0) =  
f(0)(0)

0!    .   

  (We are using the conventions that  f(0)(x) = f(x)  and that  0! = 1.) 
 
  f '(x) = a1 + 2a2x + 3a3x2 + ... + nanxn–1 + ...   

   so  f '(0) = a1 + 2a2
.0 + 3a3

.02 + ... + nan
.0n–1 + ...  = a1   and  a1 = 

f '(0)
1!    . 

 
  f ''(x) = 2a2 + 2.3a3x + ... + (n–1).n.anxn–2 + ...   

   so  f ''(0) = 2a2 + 2.3a3
.0 + ... + (n–1).n.an

.0n–2 + ...  = 2a2   and  a2 = 
f ''(0)

2    =  
f ''(0)

2!   . 
 
  f '''(x) = 2.3a3 + ... + (n–2).(n–1).n.anxn–3 + ...   

   so  f '''(0) = 2.3a3 + ... + (n–2).(n–1).n.an
.0n–3 + ...  = 2.3a3  and  a3 = 

f '''(0)
2.3

   =  
f '''(0)

3!    . 

 
  In general,  f(n)(x) = 1.2.3. ....(n–1).n an + {terms still containing powers of x} 

   so  f(n)(0) = 1.2.3. ....(n–1).n an + { 0 } = n! an   and  an =  
f(n)(0)

n!    . 
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A similar result, and proof, is also true for a "shifted" power series, a power series centered at some value  c.  

Such shifted series are called Taylor series. 
 
 
 Taylor Series for  f(x)  centered at  c 
 

 If  a function  f(x)  has a power series representation   f(x) = ∑
n=0

∞
  an(x – c)n   for  | x–c | < R 

 then  the coefficients are given by  an =  
 f(n)(c)

n!   . 
 
 The Taylor Series for  f(x)  at  c  is  
 

    f(x) = ∑
n=0

∞
 
 f(n)(c)

n!  (x–c) n = f(c) + f '(c).(x–c) + 
f ''(c)

2!   .(x–c)2 + 
f '''(c)

3!   .(x–c)3 + ... + 
f(n)(c)

n!   .(x–c)n + ... 

    
 
The proof is very similar to the proof for Maclaurin series and is not included here. 
 
A Maclaurin series is a Taylor series centered at  c = 0, and Maclaurin series are a special case of Taylor series. 
 

Note: These statements for Maclaurin series and Taylor series do not say that every function is or can be 

written as a power series.  However, if a function is a power series, then its coefficients must follow the 

given pattern.  Fortunately, most of the important functions such as  sin(x), cos(x), ex, and ln(x)  can be 

written as power series. 
 

You should notice that the first term of the Taylor series is simply the value of the function  f  at the point  

x = c:  it provides the best constant function approximation of  f  near  x = c.  The sum of the first two terms 

of the Taylor series pattern for a function, f(c) + f '(c).(x–c), is the formula for the tangent line to   

f  at  x = c  and is the linear approximation of  f(x)  near  x = c  that we first examined in Chapter 2.  The 

Taylor series formula extends these approximations to higher degree polynomials, and the partial sums of 

the Taylor series provide higher degree polynomial approximations of  f  near  x = c. 
 

Taylor series and Maclaurin series were first discovered by the Scottish mathematician/astronomer James 

Gregory (1638–1675), but the results were not published until after his death.  The English mathematician 

Brook Taylor (1685–1731) independently rediscovered these results and included them in a book in 1715.  

The Scottish mathematician/engineer Colin Maclaurin (1698–1746) quoted Taylor's work in his  Treatise 

on Fluxions  published in 1742.  Maclaurin's book was widely read, and the Taylor series centered at  c = 0 

became known as Maclaurin series. 
 

Example 2: Find the Maclaurin series for  f(x) = sin(x) and the radius of convergence of the series. 
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Solution: f(x) = sin(x)  so  f(0) = sin(0)  and  a0 = f(0) = 0. 

 f '(x) = cos(x)  so  f '(0) = cos(0) = 1  and  a1 = f '(0) = 1 . 

 f ''(x) = –sin(x)  so  f ''(0) = –sin(0) = 0  and  a2 = 
f ''(0)

2!    = 0 . 

 f '''(x) = –cos(x)  so  f '''(0) = –cos(0) = –1  and  a3 = 
f '''(0)

3!    =  
–1
3!   . 

 f(4)(x) = sin(x)  and the pattern repeats: 

  a4 = 0, a5 = 
1
5!  ,  a6 = 0 ,  a7 =  

–1
7!  ,  a8 = 0 , a9 =  

1
9!   , ...  . 

 
 

 sin(x) = x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...  =   ∑
n=0

∞
 (–1) n 

x2n+1

(2n+1)!    . 

    
 
 Notice that the Maclaurin series for  sin(x)  alternates and contains only odd powers of  x. 
 

 We use the Ratio Test to find the radius of convergence.  Let  cn = (–1)n 
x2n+1

(2n+1)!   .  Then  

 cn+1 = (–1)n+1 
x2(n+1)+1

(2(n+1)+1)!   = (–1)n+1 
x2n+3

(2n+3)!    so 
 

 |  
cn+1
cn     | = 

! 

 
 ("1)n+1 x2n+3

(2n + 3)!
 

("1)n x2n+1

(2n +1)!

  = |  
x2n+3

x2n+1  
(2n+1)!
(2n+3)!   | = |  x2  

1
(2n+2)(2n+3)   |→  0 < 1  

 for every value of  x. 
 
The radius of convergence is  R = ∞ , and the interval of convergence is  ( –∞, ∞ ).   

The Maclaurin series for sin(x) converges for every value of  x. 

 

Fig. 1  shows the graphs of  sin(x)  and the first few approximating polynomials  x, x – 
x3

3!  , and  

x – 
x3

3!   +  
x5

5!    for  –π ≤ x ≤ π . 
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By focusing our attention near  x = 0, Fig. 1 shows the "goodness" of the Taylor polynomial fit to the 

function  f(x) = sin(x).  However, Fig. 2 shows that if  x  is not close to 0 then the values of the Taylor 

polynomials are far from the values of  f(x) = sin(x).  Typically the Taylor polynomials of a function are 

closest to the function when  x  is close to the number at which the series was centered, the value of  c. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Practice 2: Find the Maclaurin series for  f(x) = cos(x) and the radius of convergence of the series. 

 (Suggestion:  Use the Term–by–Term Differentiation result of Section 10.9 .) 
 

Once we have power series representations for  sin(x)  and  cos(x),  we can use the methods of Section 10.9 

and the known series to approximate values of  sine  and  cosine, determine power series representations of 

related functions, calculate limits, and approximate definite integrals. 
 

Example 3: Use the series  sin(x) = x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...  to represent  sin( 0.5 )  as 

a numerical series.  Approximate the value of  sin( 0.5 ) by calculating the partial sum of 

the first three non–zero terms and give a bound on the "error" between this approximation 

and the exact value of  sin( 0.5 ). 
 

Solution: sin( 0.5 ) = (0.5) – 
(0.5)3

3!    +  
(0.5)5

5!    –  
(0.5)7

7!    +  
(0.5)9

9!    –  
(0.5)11

11!    +  ...  . 
 

 sin( 0.5 ) ≈  (0.5) – 
(0.5)3

3!    +  
(0.5)5

5!    = 
1
2   – 

1
48   +  

1
3840   ≈  0.479427083333 .   
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 Since this is an alternating series, the difference between the approximation and the exact value is 

less than the next term in the alternating series:  "error" <  
(0.5)7

7!    =  
1

645120   ≈  0.00000155 .   

 If we use the sum of the first four nonzero terms to approximate the value of  sin( 0.5 ), then the 

"error" of the approximation is less than   
(0.5)9

9!    =  
1

185794560   ≈  5.4 x 10–9 . 
 

We were able to obtain a bound for the error in the approximation of  sin( 0.5 ) because we were dealing 

with an alternating series, a type of series for which we have an error bound.  However, many power 

series are not alternating series.  In Section 10.11 we discuss a general error bound for Taylor series. 
 

Practice 3: Use the sum of the first two nonzero terms of the Maclaurin series for  cos(x)  to 

approximate the value of  cos( 0.2 ).  Give a bound on the "error" between this 

approximation and the exact value of  cos( 0.2 ). 
 

Calculator Note:  When you press the buttons on a calculator to evaluate  sin( 0.5 )  or  cos( 0.2 ), the 

calculator does not look up the answer in a table.  Instead, the calculator is programmed with series 

representations for sine and cosine and other functions, and it calculates a partial sum of the 

appropriate series to obtain a numerical answer.  It adds enough terms so that the  8  or  9  digits shown 

on the display are (usually) correct.  In Section 10.11 we examine these methods in more detail and 

consider how to determine the number of terms needed in the partial sum to achieve the desired 

number of accurate digits in the answer. 
 

Example 4: Represent  sin( x3 )  and  ⌡⌠  sin( x3 ) dx   as power series.  Then use the first three nonzero 

terms to approximate the value of  ⌡⌠

0

1
  sin( x3 )  dx  and  obtain a bound on the "error" of 

this approximation. 
 

Solution:   sin(x) = x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...   so   
 

 sin(x3) = (x3) – 
(x3)3

3!    +  
(x3)5

5!    –  
(x3)7

7!     ...  =   x3 – 
x9

3!   +  
x15

5!    –  
x21

7!     ...  . 
 
  

 ⌡⌠

0

1
  sin( x3 )  dx  =  ⌡⌠

0

1
  { x3 – 

x9

3!   +  
x15

5!    –  
x21

7!     ... }   dx  =  
x4

4    –  
x10

10.3!
   +  

x16

16.5!
   –  

x22

22.7!
   +  ... |1

0
  

 

    =  {  
1
4   –  

1
10.3!

   +  
1

16.5!
   –  

1
22.7!

   +  ... } – { 0 } . 
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1
4   –  

1
10.3!

   +  
1

16.5!
    ≈  0.2338542  and  

1
22.7!

   =  
1

110880   ≈  0.0000090   so 

 

 ⌡⌠

0

1
  sin( x3 )  dx ≈ 0.2338542  and this approximation is within  0.0000090  of the exact value. 

 

 If we took just one more term,  ⌡⌠

0

1
  sin( x3 )  dx  ≈  

1
4   –  

1
10.3!

   +  
1

16.5!
   –  

1
22.7!

    ≈ 0.233845515 

 is within     
1

28.9!
   ≈  0.000000098  of the exact value of the integral. 

  

Practice 4: Represent  x.cos( x3 )  and  ⌡⌠  x.cos( x3 ) dx   as power series.  Then use the first two 

nonzero terms to approximate the value of  ⌡⌠

0

1/2
  x.cos( x3 )  dx  and  obtain a bound on the 

"error" of this approximation. 
 

Graphically 
 

Each partial sum of the series  sin(x) = x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...   contains a finite number 

of terms and is simply a polynomial: 
 
 P1(x)  = x 

 P3(x)  = x – 
x3

3!   =  x –  
1
6  x3   

 P5(x)  = x – 
x3

3!   +  
x5

5!   =  x –  
1
6  x3  +  

1
120  x5  ,   .... . 

 
Fig. 1  showed the graphs of  sin(x)  and  P1(x), P3(x),  and  P5(x).  As you saw, all of these polynomials 

are "good" approximations of  sin(x)  when  x  is very close to 0.  The higher degree polynomials  Pn(x)  

provide "good" approximations of  sin(x)  over larger intervals.   
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Power Series for  ex 
 

Example 5: Find the Maclaurin series for  f(x) = ex and the radius of convergence of the series. 
 
Solution: This is a very important series. 
 

 f(x) = ex  so  f(0) = e0 = 1  and  a0 = f(0) = 1. 

 f '(x) = ex  so  f '(0) = e0 = 1  and  a1 = f '(0) = 1 . 

 f ''(x) = ex  so  f ''(0) = e0 = 1  and  a2 = 
f ''(0)

2!    = 
1
2!  . 

 For every value of  n,  f (n)(x) = ex  so  f (n)(0) = e0 = 1  and  an = 
f ''(0)

n!    = 
1
n!  .  Then 

 
 

 ex  =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  + ...  =   ∑
n=0

∞
 
xn

n!    . 

   
 

 We can use the Ratio Test to find the radius of convergence.  cn =  
xn

n!     so  cn+1 =  
xn+1

(n+1)!   . 

|  
cn+1
cn   |  =  

! 

 
 xn+1

(n +1)!
 

xn

n!

  =  |  
xn+1

xn   
n!

(n+1)!   |  =  | x. 1
n+1   |    →   0 < 1   for every value of  x. 

The radius of convergence is  R = ∞ , and the interval of convergence is  ( –∞, ∞ ).  The Maclaurin 

series for ex converges for every value of  x. 
 

Practice 5: Evaluate the partial sums of the first six terms of the numerical series for  e = e1  and   

 
1
e   = e–1/2  and compare these partial sums with the values your calculator gives. 

 (Note:  The numerical series for  e1  is not an alternating series so we do not have a bound 

for the approximation yet.  We will in the next section.) 

Fig. 3 shows the graphs of  ex  and  the approximating polynomials  1 + x,  1 + x + 
x2

2!  , and   

1 + x + 
x2

2!   + 
x3

3!   for values of    near  0. 
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 The following series converge for all values of x in the interval  I: 
 

 sin(x) = x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...  =   ∑
n=0

∞
 (–1) n 

x2n+1

(2n+1)!     I = ( –∞ , ∞ ). 

 

 cos(x) = 1 – 
x2

2!   +  
x4

4!   –  
x6

6!   +  
x8

8!   –  
x10

10!   +  ...  =   ∑
n=0

∞
 (–1) n 

x2n

(2n)!     I = ( –∞ , ∞ ). 

 

 ex  =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  + ...  =   ∑
n=0

∞
 
xn

n!     I = ( –∞ , ∞ ). 

 

 ln(x) = (x–1) – 
1
2 (x–1) 2 + 

1
3 (x–1) 3 – 

1
4(x–1) 4 + ...  =   ∑

n=1

∞
 (–1) n+1 

(x–1)n
n       I = ( 0 , 2 ] . 

     
 

Typically, these series converge very quickly to the value of the functions when  x  is close to  0 (or when  

x  is close to  1  for  ln(x) ), but the convergence can be rather slow when  x  is far from  0.  For example, 

the first  2  terms of the Taylor series for sine approximate  sin( 0.1 )  correctly to  6  decimal places, but 11 

terms are needed to approximate  sin( 5 )  with the same accuracy. 
 
 

Multiplying Power Series 
 

We can add and subtract power series term–by–term, and we have already multiplied power series by 

single terms such as  x  and  x2 , but occasionally it is useful to multiply a power series by another power 

series.  The method for multiplying series is the same method we use to multiply a polynomial by another 

polynomial, but it becomes very tedious to get more than the first few terms of the resulting product. 

 
Example 6: Find the first 5 nonzero terms of  
 

   
1

1–x  .sin(x) =  ( 1 + x + x2 + x3 + ... ).( x – 
x3

6    +  
x5

120   –  ... ) . 
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Solution: 1  + x  + x2  + x3  + x4  + x5   + ...  

 times     x   – 
x3

6      +  
x5

120     –  ...  
    

     x + x2  + x3  + x4 + x5   +  .... (from multiplying by x) 
 

     – 
1
6  x3  – 

1
6  x4 – 

1
6  x5   +  ... (from multiplying by –x3/6) 

 

       + 
1

120  x5  +  ... (from multiplying by x5/120) 
     

  =   x + x2  + 
5
6  x3  + 

5
6  x4 + 

101
120  x5   +  .... (from adding previous terms) 

 

Practice 6: Find the first 3 nonzero terms of  

   ex.sin(x) =  ( 1 + x + 
x2

2    + 
x3

6    + ... ).( x – 
x3

6    +  
x5

120   –  ... ) . 
 

It is also possible to divide one power series by another power series using a procedure similar to "long 

division" of a polynomial by a polynomial, but we will not discuss that algorithm. 

 

PROBLEMS 

 
1. Find a formula for a polynomial  P  of degree 2 such that  P(0) = 7, P '(0) = –5, and P"(0) = 8. 
 
2. Find a formula for a polynomial  P  of degree 3 such that  P(0) = –1, P '(0) = 2, P"(0) = –5, and P '''(0) = 12. 
 
3. Find a formula for a polynomial  P  of degree 2 such that  P(3) = –2, P '(3) = 5, and P"(3) = 4. 
 
4. Find a formula for a polynomial  P  of degree 2 such that  P(1) = –2, P '(1) = 5, and P"(1) = 4. 
 

In problems 5 – 8, calculate the first several terms of the Maclaurin series for the given functions and 

compare with the series representations we found in Section 10.9 .  (The series should be the same.) 
 
5. ln( 1 + x )  to the  x4  term 6. ln( 1 – x )  to the  x4  term 
 
7. arctan( x )   to the  x3  term 8. 1/(1 – x)   to the  x4  term 
 
In problems 9 – 12, calculate the first several terms of the Maclaurin series for the given functions. 
 
9. cos( x )  to the  x6  term 10. tan( x )  to the  x5  term 
 
11. sec( x )  to the  x4  term 12. e3x  to the  x4  term 
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In problems 13 - 18, calculate the first several terms of the Taylor series for the given functions at the given 

point  c. 
 
13. ln( x )  for  c = 1 14. sin( x )  for  c = π  
 
15. sin( x )  for  c = π/2 16. x   for c = 1 
 
17. x    for  c = 9 
 

In problems  18 – 21,  use the first three nonzero terms of the Maclaurin series for each function to 

approximate the numerical values.  Then compare the Maclaurin series approximation with the value your 

calculator gives. 
 
18. sin( 0.1 ), sin( 0.2 ), sin( 0.5 ), sin( 1 ), and sin( 2 ) 
 
19. cos( 0.1 ), cos( 0.2 ), cos( 0.5 ), cos( 1 ), and cos( 2 ) 
 
20. ln( 1.1 ), ln( 1.2 ), ln( 1.3 ), ln( 2 ),  and  ln( 3 ) 
 
21. arctan( 0.1 ), arctan( 0.2 ), arctan( 0.5 ), arctan( 1 ), and arctan( 2 ) 
 
In problems 22 – 27, calculate the first three nonzero terms of the power series for each of the integrals. 
 

22.  ⌡⌠   cos( x2 ) dx  and   ⌡⌠   cos( x3 ) dx 23.  ⌡⌠   sin( x2 ) dx  and   ⌡⌠   sin( x3 ) dx 

 

24.  ⌡⌠   e( x2 ) dx  and   ⌡⌠   e( x3 ) dx 25.  ⌡⌠   e( –x2 ) dx  and   ⌡⌠   e( –x3 ) dx  

 

26.  ⌡⌠   ln( x ) dx  and   ⌡⌠   x ln( x ) dx 27.  ⌡⌠   x sin( x ) dx  and   ⌡⌠   x2 sin( x ) dx 

 
In problems 28 – 35, use the series representation of these functions to calculate the limits. 
 

28. 

! 

lim
x"0

 1- cos(x)
x

 29. 

! 

lim
x"0

 1- cos(x)
x2

 30. 

! 

lim
x"0

 ln(x)
x -1

  

 

31. 

! 

lim
x"0

 1- ex

x
 32. 

! 

lim
x"0

 1+ x - ex

x2
 33. 

! 

lim
x"0

 sin(x)
x

 

34. 

! 

lim
x"0

 x - sin(x)
x3

 35. 

! 

lim
x"0

 
x - x3

6
- sin(x)

x5
 

 

36. Use the series for  ex  and  e–x  to write a series representation for  cosh(x) =  
1
2 ( ex + e–x ) . 

 (The function  "cosh"  is called the hyperbolic cosine function.) 
 

37. Use the series for  ex  and  e–x  to write a series representation for  sinh(x) =  
1
2 ( ex – e–x ) . 

 (The function  "sinh"  is called the hyperbolic sine function.) 
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38. Show that  D( series for cosh( x ) in problem 36 )  is the series for sinh( x ) in problem 37. 
 
39. Show that  D( series for sinh( x ) in problem 37 )  is the series for cosh( x ) in problem 36. 

 
Euler's Formula  
 
So far we have only discussed series with real numbers, but sometimes it is useful to replace the variable  

with complex numbers.  The next problems ask you to make such a substitution and then to derive and use 

one of the most famous formulas in mathematics, Euler's formula.  (Recall that  i = –1    is called the 

complex unit and that its powers follow the pattern  i2 = –1, i3 = (i2)(i) = –i, i4 = (i2)(i2) = 1,  

i5 = (i4)(i) = i, ... )  
 

40. Start with the series  ex  =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  +  
x6

6!  +  
x7

7!  +  
x8

8!  + ...    

 (a) Substitute  "ix"  for  "x" and write a series for  eix . 

 (b) In part (a) simplify each power of  i  and write a simplified series for  eix .  (e.g.,  (ix)3/3!   

  simplifies to  i3x3/3! = –i.x3/3! ) 

 (c) Sort the terms in the series in part (b) into those terms that do not contain  i  and those terms that  

  do contain  i.  Then rewrite the series for  eix  in the form   

  eix = { terms that did not contain  i } + i.{ terms that did contain i }. 

 (d) You should recognize the sum in each bracket in part (c) as the series for an elementary function   

  (hint: think trigonometry).  Rewrite the pattern in part (c)  as   

  eix = { function } + i.{ another function }. 
 
41. The answer you should have gotten in problem 40d, eix = cos(x) + i.sin(x) , is called Euler's formula.   

 Use Euler's formula to calculate the values of  ei(π/2) and  eπi . 
 
42. Use Euler's formula to show that   eπi + 1 = 0.  This is one of the most remarkable formulas in  

 mathematics because it connects five of the most fundamental constants (the additive identity 0, the 

multiplicative identity 1, the complex unit i, and the two most commonly used irrational numbers  π  

and  e  in a simple but non-obvious way. 
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Binomial Series  

 
You have probably seen the pattern for expanding  (1 + x)n   

where  n  is a nonnegative integer: 
 

(1 + x)0  =  1 

(1 + x)1  =  1 + x 

(1 + x)2  =  1 + 2x + x2   

(1 + x)3  =  1 + 3x + 3x2 + x3    

(1 + x)4  =  1 + 4x + 6x2 + 4x3 + x4    

(1 + x)5  =  1 + 5x + 10x2 + 10x3 + 5x4 + x5    
 

either using Pascal's triangle  (Fig. 4)  or using the binomial coefficients, written  ( )n
k    and  defined as 

 

 ( )n
0   = 1   and    ( )n

k   =  
n(n – 1)(n – 2) ... (n – k + 1)

k!     =   
n!

k! (n–k)!    . 

 

43. Calculate the binomial coefficients  ( )3
0  ,  ( )3

1  ,  ( )3
2  , and  ( )3

3    and verify that  

 (i) they agree with the entries in the 3rd row of Pascal's triangle 

 (ii) they agree with the coefficients of the terms of  (1 + x)3  . 
 

44. Calculate the binomial coefficients  ( )4
0  ,  ( )4

1  ,  ( )4
2  ,  ( )4

3  , and  ( )4
4    and verify that  

 (i) they agree with the entries in the 4th row of Pascal's triangle 

 (ii) they agree with the coefficients of the terms of  (1 + x)4  . 
 

Using binomial coefficients, the pattern for nonnegative integer powers of  (1 + x)  can be described in a 

very compact way: 

   (1 + x)n  =  ∑
k=0

n
   ( )n

k   xk . 

When  n  is a positive integer,  (1 + x)n  expands to be a polynomial of degree  n.   

But what happens when  n  is a negative integer or perhaps not even an integer?   This was a question that 

Newton himself investigated, and it led him to a general pattern, called the Binomial Series Theorem, for   

(1 + x)m  when  m  is any real number.  And now you can do it, too. 
 
45. Let  f(x) = (1 + x)5/2  and determine the first 5 terms of the Maclaurin series for  f(x). 
 
46. Let  f(x) = (1 + x)–3/2  and determine the first 5 terms of the Maclaurin series for  f(x). 
 

1
1   1

1   2   1
1   3   3   1

1   4   6   4   1
1   5  10  10  5   1

1   6  15  20  15  6   1

0
1
2
3
4
5
6

Row Pascal's Triangle

Each number in Pascal's Triangle is 

the sum of the two numbers closest 

to it in the row immediately above it.

Fig. 4
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47. Let  f(x) = (1 + x)m  and determine the first 4 terms of the Maclaurin series for  f(x).  This is the start 

of the derivation of the Binomial Series Theorem given below. 

 
 
 Binomial Series Theorem 
 
  If m  is any real number  and  |x| < 1 
 

  then (1 + x)m  = 1 + mx + 
m(m–1)

2   x2 + 
m(m–1)(m–2)

3!   x3 + ...  =  ∑
k=0

∞
   ( )m

k   xk  

 

   where  ( )m
k   = 

m(m – 1)(m – 2) ... (m – k + 1)
k!    (for  k ≥ 1)   and  ( )m

0   = 1. 

 

 

48. Use the Ratio Test to show that    ∑
k=0

∞
   ( )m

k   xk   converges for  |x| < 1. 

 
 
 
Practice Answers 

 
Practice 1: P(x) = a0 + a1x + a2x2 + a3x3 + a4x4  with  P(0) = –3, P '(0) = 4, P "(0) = 10,  

  P '''(0) = 12, and  P(4)(0) = 24.    
 –3 = P(0) = a0 + a1

.0 + a2
.0 + a3

.0 + a4
.0 = a0    so a0 = –3 

  P '(x) = a1 + 2a2x + 3a3x2 + 4a4x3    

 4 = P '(0) = a1 + 2a2
.0 + 3a3

.0 + 4a4
.0 = a1  so a1  = 4    

  P ''(x) = 2a2 + 6a3x + 12a4x2    

 10 = P ''(0) = 2a2 + 6a3
.0 + 12a4

.0 = 2a2  so a2 = 10/2 = 5 

  P "'(x) = 6a3 + 24a4x       

 12 = P "'(0) = 6a3 + 24a4
.0 = 6a3  so a3 = 12/6 = 2 

  P (4)(x) = 24a4    

 24 = P (4)(0) = 24a4    so a4 = 24/24 = 1  . 

 Then  P(x) = –3 + 4x + 5x2 + 2x3 + 1x4  . 
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Practice 2: cos( x ) = D( sin( x ) ) = D(  x – 
x3

3!   +  
x5

5!   –  
x7

7!   +  
x9

9!   –  
x11

11!   +  ...   )  
 

  = 1 – 3. x
2

3!   + 5. x
4

5!   – 7. x
6

7!   + 9. x
8

9!   – 11. x
10

11!   + ... 
 

  = 1 –  
x2

2!   + 
x4

4!   –  
x6

6!   +  
x8

8!   –  
x10

10!   + ...  =   ∑
n=0

∞
 (–1) n 

x2n

(2n)!       

 

Practice 3: cos( x ) = 1 –  
x2

2!   + 
x4

4!   –  
x6

6!   +  
x8

8!   –  
x10

10!   + ...   

 Using the first two nonzero terms,  cos( 0.2 ) ≈ 1 – 
(0.2)2

2!    = 1 – 
0.04

2    = 0.98 . 

 Since cos( 0.2 ) =  1 – 
(0.2)2

2!    + 
(0.2)4

4!    –  
(0.2)6

6!    +  ...  is a convergent alternating series, the error 

is less than the absolute value of the next term.    

 Then  cos( 0.2 ) ≈ 1 – 
(0.2)2

2!    = 0.98  with an error less than  |  
(0.2)4

4!    |  =  
0.0016

24    ≈ 0.000067 : 

 | cos( 0.2 ) – 0.98 | < 0.000067 .  (In fact, cos( 0.2 ) ≈ 0.9800665778 .) 
 

Practice 4: cos( x ) = 1 –  
x2

2!   + 
x4

4!   –  
x6

6!   +  
x8

8!   –  
x10

10!   + ...   
 

 cos( x3 ) = 1 – 
(x3)2

2!    + 
(x3)4

4!    – 
(x3)6

6!    + 
(x3)8

8!    – ...  =  1 – 
x6

2!   + 
x12

4!    – 
x18

6!    + 
x24

8!    –  
x30

10!   + ... 
 

 x.cos( x3 ) =  x – 
x7

2!   + 
x13

4!    – 
x19

6!    + 
x25

8!    –  
x31

10!   + ... 
 

 ⌡⌠   x.cos( x3 )  dx  =    
x2

2   – 
1
8  . x

8

2!   +  
1
14  . x

14

4!    –  
1
20  . x

20

6!    +  
1
26  . x

26

8!    –  
1
32  . x

32

10!   + ...  + C 
 

 ⌡⌠

0

1/2
   x.cos( x3 )  dx  

! 

"    
x2

2    – 
1
8  . x

8

2!   |1/2

0
  =  ( 

(0.5)2
2    –  

(0.5)8
2!8    ) – ( 0 ) ≈ 0.124755859  

  with | error | ≤ 
(0.5)14

4!14    ≈  1.82.10–7 = 0.000000182 . 
 

Practice 5: ex  =  1 + x +  
x2

2!  +  
x3

3!  +  
x4

4!  +  
x5

5!  + ...  .  Using the first six terms, 
 

 e1  ≈  1 + 1 +  
1
2!  +  

1
3!  +  

1
4!  +  

1
5!    ≈  2.71666666666  (My calculator gives  e1  ≈ 2.718281828 ) 

 

 e–1/2 ≈    1 + (–1/2) +  
(–1/2)2

2!   +  
(–1/2)3

3!   +  
(–1/2)4

4!   +  
(–1/2)5

5!    ≈  0.6065104167   
 

  (My calculator gives  e–1/2 ≈ 0.6065306597 ). 
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Practice 6:  1 +  x +  
x2

2    +  
x3

6    +  ...   ( = ex ) 
 

 times  x –  
x3

6    +   
x5

120   –  ...   ( = sin(x)  ) 
                    

   x + x2 + 
x3

2    + 
x4

6    +  ...   (from multiplying by  x) 

     – 
x3

6    – 
x4

6    – 
x5

12   –  ...  (from multiplying by  –x3/6) 

       
x5

120   +  ...  (from multiplying by  x5/120) 
               

 product is  x + x2 + 
x3

3     + 0  – 
–9x5

120    +  ...  (from adding the previous terms) 
 

 The sum of the first three nonzero terms is   ex.sin(x) =  x +  x2 +  
x3

3     +  ...  . 

    

 

 

MAPLE command to plot Fig. 2 
 
plot({x, x-x^3/6, x-x^3/6+x^5/120, sin(x)}, x=-9..9, y=-6..6, color=[blue, green, black, red], thickness=3); 

 


