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5.6 Moments and Centers of Mass

This section develops a method for finding the center of mass of a thin,
flat shape — the point at which the shape will balance without tilting
(see margin). Centers of mass are important because in many applied
situations an object behaves as though its entire mass is located at its
center of mass. For example, the work required to pump the water in
a tank to a higher point is the same as the work required to move a
small object with the same mass located at the tank’s center of mass to
the higher point (see margin), a much easier problem (if we know the
mass and the center of mass of the water). Volumes and surface areas
of solids of revolution can also become easy to calculate if we know the
center of mass of the region being revolved.

Point-Masses in One Dimension

Before investigating the centers of mass of complicated regions, we
consider point-masses (and systems of point-masses), first in one di-
mension and then in two dimensions.

Two people with different masses can position themselves on a
seesaw so that the seesaw balances (see margin). The person on the
right causes the seesaw to “want to turn” clockwise about the fulcrum,
and the person on the left causes it to “want to turn” counterclockwise.
If these two “tendencies” are equal, the seesaw will balance on the
fulcrum. A measure of this tendency to turn about the fulcrum is called
the moment about the fulcrum of the system, and its magnitude is the
product of the mass and the distance from the mass to the fulcrum.

In this seesaw example, we need to imag-
ine that the seesaw is constructed us-
ing a very lightweight — yet sturdy —
substance, so that its mass is negligible
compared with the masses of the two
people.

In general, the moment about the origin, M0, produced by a mass
m1 at a location x1 is m1 · x1, the product of the mass and the “signed
distance” of the point-mass from the origin (see margin). For a system
of n masses m1, m2, . . . , mn at locations x1, x2, . . . , xn, respectively, the
total mass of the system is:

m = m1 + m2 + · · ·+ mn =
n

∑
k=1

mk

and the moment about the origin of the system is:

M0 = m1 · x1 + m2 · x2 + · · ·+ mn · xn =
n

∑
k=1

mk · xk

If the moment about the origin is positive, then the system “tends to
rotate” clockwise about the origin. If the moment about the origin is
negative, then the system “tends to rotate” counterclockwise about the
origin. If the moment about the origin is zero, then the system does
not tend to rotate in either direction about the origin: it balances on a
fulcrum located at the origin.
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The moment about a point x = p, Mp, produced by a mass m1 at
location x = x1 is the product of the mass and the signed distance
of x1 from the point p: m1 · (x1 − p). The moment about a point
x = p produced by masses m1, m2, . . . , mn at locations x1, x2, . . . , xn,
respectively, is:

Mp = m1 (x1 − p) + m2 (x2 − p) + · · ·+ mn (xn − p) =
n

∑
k=1

mk (xk − p)

The point at which a system of point-masses balances is called the
You have seen this “bar” notation before,
in conjunction with the average value of
a function. Here we can think of x as a
“weighted average”.

center of mass of the system, written x (pronounced “x-bar”). Because
the system balances at x = x, the moment about x, Mx, must be 0.
Using this fact (and summation properties), we obtain a formula for x:

0 = Mx =
n

∑
k=1

mk · (xk − x) =

[
n

∑
k=1

mk · xk

]
−
[

n

∑
k=1

mk · x

]

=

[
n

∑
k=1

mk · xk

]
− x ·

[
n

∑
k=1

mk

]
= M0 − x · m

so x · m = M0 and solving for x yields the following formula.

We can factor x out of the second sum
because it is constant.

The center of mass of a system of point-masses m1, m2, . . . , mn

at locations x1, x2, . . . , xn is:

x =
M0

m
=

∑n
k=1 mk · xk

∑n
k=1 mk

A single point-mass with mass m (the total mass of the system)
located at x (the center of mass of the system) produces the same
moment about any point on the line as the whole system:

Mp =
n

∑
k=1

mk (xk − p) =

[
n

∑
k=1

mkxk

]
− p

[
n

∑
k=1

mk

]
= M0 − pm

= m
(

M0

m
− p

)
= m (x − p)

For many purposes, we can think of the mass of the entire system as
being “concentrated at x.”

k mk xk

1 2 -3
2 3 4

3 1 6

4 5 -2
5 3 4

Example 1. Find the center of mass of the system consisting of the first
three point-masses listed in the margin table.

Solution. m = 2+ 3+ 1 = 6 and M0 = (2)(−3)+ (3)(4)+ (1)(6) = 12
so:

x =
M0

m
=

12
6

= 2

The system of three point-masses will balance on a fulcrum at x = 2. ◀

Practice 1. Find the center of mass of the system consisting of the last
three point-masses listed in the margin table.
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Point-Masses in Two Dimensions
As in the seesaw example, we need to
imagine that the point-masses are sitting
on a thin — yet strong — plate of neg-
ligible mass compared with the point-
masses.

The concepts of moments and centers of mass extend nicely from one
dimension to a system of masses located at points in a plane. For a
“knife edge” fulcrum located along the y-axis (see margin), the moment
of a point-mass with mass m1 located at the point (x1, y1) is the product
of the mass and the signed distance of the point-mass from the y-axis:
m1 · x1. This “tendency to rotate about the y-axis” is called the moment
about the y-axis, written My. Here, My = m1 · x1. Similarly, a point-
mass with mass m1 located at the point (x1, y1) has a moment about
the x-axis (see margin): Mx = m1 · y1.

For a system of masses mk located at the points (xk, yk), the total
mass of the system is (as before):

m = m1 + m2 + · · ·+ mn =
n

∑
k=1

mk

while the moment about the y-axis is:

My = m1 · x1 + m2 · x2 + · · ·+ mn · xn =
n

∑
k=1

mk · xk

and the moment about the x-axis is:

Mx = m1 · y1 + m2 · y2 + · · ·+ yn · xn =
n

∑
k=1

mk · yk

At first, it may seem confusing that the formula for My would involve
x and the formula for Mx would involve y, but keep in mind that an
equation for the y-axis is x = 0, so we could write the moment about
the y-axis as Mx=0 and the moment about the x-axis as My=0.

If we can find such a point, then the
system will balance on a single “point-
fulcrum” located at the center of mass.

The center of mass of this two-dimensional system is a point (x, y)
such that any line that passes through this point is a “balancing fulcrum”
for the system. So we need the moment about any such line — including
x = x and y = y — to be zero:

0 = Mx=x =
n

∑
k=1

mk (xk − x) =

[
n

∑
k=1

mk · xk

]
− x

[
n

∑
k=1

mk

]
= My − xm

so x =
My

m
, and similar arithmetic shows that y =

Mx

m
.

The center of mass of a system of point-masses m1, m2, . . . , mn at
locations (x1, y1), (x2, y2), . . . , (xn, yn) is the point (x, y) where:

x =
My

m
=

∑n
k=1 mk · xk

∑n
k=1 mk

and y =
Mx

m
=

∑n
k=1 mk · yk

∑n
k=1 mk
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A single point-mass with mass m (the total mass of the system)
located at (x, y) (the center of mass of the system) produces the same
moment about any line as the whole system does about that line. For
many purposes, we can think of the mass of the entire system being
“concentrated at (x, y).”

The arithmetic needed to prove this state-
ment is similar to arithmetic we did to
prove the corresponding assertion for a
one-dimensional system.

k mk xk yk

1 2 -3 4

2 3 4 -7
3 1 6 -2
4 5 -2 1

5 3 4 -6

Example 2. Find the center of mass of the system consisting of the first
three point-masses listed in the margin table.

Solution. m = 2+ 3+ 1 = 6 and My = (2)(−3)+ (3)(4)+ (1)(6) = 12
while Mx = (2)(4) + (3)(−7) + (1)(−2) = −15 so:

x =
My

m
=

12
6

= 2 and y =
Mx

m
=

−15
6

= −2.5

The system of three point-masses will balance on any fulcrum passing
through the point (2,−2.5). ◀

Practice 2. Find the center of mass of the system consisting of all five
point-masses listed in the margin table.

Centroid of a Region

When we move from discrete point-masses to continuous regions in a
plane, we move from finite sums and arithmetic to limits of Riemann
sums, definite integrals and calculus. The following discussion extends
ideas and calculations from point-masses to uniformly thin, flat plates
(called lamina) that have a uniform density throughout (given as mass
per area, such as “grams per cm2”). The center of mass of one of these
plates is the point (x, y) at which the plate balances without tilting.
It turns out that for plates with uniform density, the center of mass
(x, y) depends only on the shape (and location) of the region of the
plane covered by the plate and not on the (constant) density. In these
uniform-density situations, we call the center of mass the centroid of
the region. Throughout the following discussion, you should notice
that each finite sum that appeared in the discussion of point-masses
has an integral counterpart for these thin plates.

Rectangles

The components of a Riemann sum typically involve areas of rectangles,
so it should come as no surprise that the basic shape used to extend
point-mass concepts to regions is the rectangle. The total mass of a
rectangular plate is the product of the area of the plate and its (constant)
density: m = mass = (area) · (density). We will assume that the center
of mass of a thin, rectangular plate is located halfway up and halfway
across the rectangle, at the point where the diagonals of the rectangle
cross (see margin).
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The moments of the rectangle about an axis can be found by treating
the rectangle as a single point-mass with mass m located at the center
of mass of the rectangle.

Example 3. Find the moments about the x-axis, y-axis and the line
x = 5 of the thin, rectangular plate shown in the margin.

Solution. The density of the plate is 3 g/cm2 and the area of the plate
is (2 cm) (4 cm) = 8 cm2 so the total mass is:

m =
(

8 cm2
) (

3
g

cm2

)
= 24 g

The center of mass of the rectangular plate is (x, y) = (3, 4). The
moment about the x-axis is the product of the mass and the signed
distance of the mass from the x-axis: Mx = (24 g) (4 cm) = 96 g-cm.
Similarly, My = (24 g) (3 cm) = 72 g-cm. The moment about the line
x = 5 is Mx=5 = (24 g) ([5 − 3] cm) = 48 g-cm. ◀

To find the moments and center of mass of a plate made up of several
rectangular regions, we can simply treat each of the rectangular pieces
as a point-mass concentrated at its center of mass, then treat the plate
as a system of discrete point-masses.

Example 4. Find the centroid of the region in the margin figure.

Solution. We can divide the plate into two rectangular plates, one
with mass 24 g and center of mass (1, 4), and the other with mass 12 g
and center of mass (3, 3). The total mass of the pair of point-masses
is m = 24 + 12 = 36 g, and the moments about the axes are Mx =

(24 g) (4 cm) + (12 g) (3 cm) = 132 g-cm and My = (24 g) (1 cm) +

(12 g) (3 cm) = 60 g-cm. So:

x =
My

m
=

60 g-cm
36 g

=
5
3

cm and y =
Mx

m
=

132 g-cm
36 g

=
11
3

cm

The centroid of the plate is located at
(

5
3 , 11

3

)
. ◀

Practice 3. Find the centroid of the region in the margin figure.

To find the center of mass of a thin, non-rectangular plate, we will
“slice” the plate into narrow, almost-rectangular plates and treat the
collection of almost-rectangular plates as a system of point-masses
located at the centers of mass of the almost-rectangles. The total mass
and moments about the axes for the system of point-masses will be
Riemann sums. By taking limits as the widths of the almost-rectangles
approach 0, we will obtain exact values for the mass and moments as
definite integrals
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x for a Region

Suppose f (x) ≥ g(x) on the interval [a, b] and R is a plate of uniform
density (= ρ) sitting on the region between the graphs of f (x) and g(x)
and the lines x = a and x = b (see margin figure). If we partition the
interval [a, b] into n subintervals of the form [xk−1, xk] and choose the
points ck to be the midpoints of these subintervals, then the slice be-
tween vertical cuts at x = xk−1 and x = xk is approximately rectangular
and has mass approximately equal to:

(area) (density) = (height) (width) (density)

≈ [ f (ck)− g (ck)] · (xk−1 − xk) · ρ

= ρ [ f (ck)− g (ck)]∆xk

So the mass of the whole plate is approximately

m =
n

∑
k=1

ρ [ f (ck)− g (ck)]∆xk −→
∫ b

a
ρ [ f (x)− g(x)] dx = ρ · A

where A is the area of the region R.

The Greek letter ρ (pronounced “row,”
as in “row your boat”) is often used to
represent the density of a region.

The moment about the y-axis of each almost-rectangular slice is the
product of the mass of the slice (m) and the distance from the centroid
of the almost-rectangle to the y-axis. The x-coordinate of that centroid
is located at x = ck, so the distance from the centroid to the y-axis is
ck − 0 = ck. The moment of the almost-rectangle about the y-axis is
therefore:

mk · ck = (ρ [ f (ck)− g (ck)]∆xk) · ck

so the moment of the entire plate about the y-axis is (approximately):

My =
n

∑
k=1

ρck · [ f (ck)− g (ck)]∆xk −→
∫ b

a
ρx · [ f (x)− g(x)] dx

The x-coordinate of the centroid of the plate is therefore:

x =
My

m
=

ρ
∫ b

a x · [ f (x)− g(x)] dx

ρ
∫ b

a [ f (x)− g(x)] dx
=

∫ b
a x · [ f (x)− g(x)] dx∫ b

a [ f (x)− g(x)] dx

The density constant ρ is a factor of both My and m, so it cancels and
has no effect on the value of x. The value of x depends only on the
shape and location of the region R.

If the bottom boundary of R is the x-axis, then g(x) = 0 and the
previous formulas simplify to:

m = ρ
∫ b

a
f (x) dx, My = ρ

∫ b

a
x f (x) dx and x =

My

m
=

∫ b
a x f (x) dx∫ b
a f (x) dx

Practice 4. Find the x-coordinate of the centroid of the region between
f (x) = x2, the x-axis and x = 2.
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y for a Region

To find y, the y-coordinate of the centroid of R, we need to find Mx, the
moment of R about the x-axis. For vertical partitions of R (see margin),
the moment of each narrow strip about the x-axis, Mx, is the product
of the strip’s mass and the signed distance between the centroid of the
strip and the x-axis. We’ve already computed the mass:

mk = ρ [ f (ck)− g (ck)]∆xk

Because each strip is nearly rectangular, the centroid of the k-th strip
is roughly halfway up the strip, at a point midway between f (ck) and
g (ck), so we can average those function values to compute:

yk ≈
f (ck) + g (ck)

2

The moment about the x-axis for this strip is thus:

ρ [ f (ck)− g (ck)]∆xk ·
[

f (ck) + g (ck)

2

]
=

ρ

2

[
( f (ck))

2 − (g (ck))
2
]

∆xk

Adding up the moments of all n strips yields:

Mx =
n

∑
k=1

ρ

2

[
( f (ck))

2 − (g (ck))
2
]

∆xk −→
∫ b

a

ρ

2

[
( f (x))2 − (g (x))2

]
dx

The y-coordinate of the centroid of the plate is therefore:

y =
Mx

m
=

ρ
∫ b

a
1
2

[
( f (x))2 − (g (x))2

]
dx

ρ
∫ b

a [ f (x)− g(x)] dx
=

∫ b
a

1
2

[
( f (x))2 − (g (x))2

]
dx∫ b

a [ f (x)− g(x)] dx

If the bottom boundary of R is the x-axis, then g(x) = 0 and the
previous formulas simplify to:

Mx =
ρ

2

∫ b

a
x [ f (x)]2 dx and y =

Mx

m
=

∫ b
a

1
2 [ f (x)]2 dx∫ b
a f (x) dx

Example 5. Find the y-coordinate of the centroid of the region R
bounded below by the x-axis and above by the top half of a circle of
radius r centered at the origin (see margin).

Solution. An equation for the circle is x2 + y2 = r2 so the top half is
given by f (x) = y =

√
r2 − x2, and g(x) = 0. The mass of the region is:

m =
∫ r

−r
ρ
√

r2 − x2 dx = ρ
∫ r

−r

√
r2 − x2 dx = ρ · [area of R] = ρ · πr2

2

The moment of R about the y-axis is:

My =
∫ r

−r
ρx ·

√
r2 − x2 dx =

[
−ρ

3

(
r2 − x2

) 3
2
]x=r

x=−r
= 0

so x = 0.
Could you have guessed this result
merely by looking at the region?
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The moment of R about the x-axis is:

Mx =
∫ r

−r

ρ

2
·
[√

r2 − x2
]2

dx =
ρ

2

∫ r

−r

[
r2 − x2

]
dx

=
ρ

2

[
r2x − 1

3
x3
]r

−r
=

ρ

2
· 4

3
r3 =

2ρ

3
r3

so y =
2ρ
3 r3

ρπ
2 r2

=
4

3π
r ≈ 0.4244r. ◀

Could you have guessed that centroid
would be located a bit less than halfway
above the bottom edge of the semicircle,
merely by looking at the region?

Practice 5. Show that the centroid of a triangular region with vertices

(0, 0), (0, h) and (b, 0) is located at (x, y) =
(

b
3

,
h
3

)
.

The following table summarizes and compares formulas for com-
puting moments and centers of mass for a system of point-masses in a
plane (using sums) and for a region in a plane (using integrals). The
integral formulas appear in a form for calculating moments of a region
R bounded by the graphs of two functions, f (x) and g(x), and two
vertical lines, x = a and x = b, where f (x) ≥ g(x) for a ≤ x ≤ b.

point-masses in plane region R between f and g

total mass: m =
n

∑
k=1

mk m =
∫ b

a
ρ [ f (x)− g(x)] dx = ρ · Area (R)

moment about y-axis (x = 0): My =
n

∑
k=1

mk · xk My =
∫ b

a
ρx · [ f (x)− g(x)] dx

moment about x-axis (y = 0): Mx =
n

∑
k=1

mk · yk Mx =
∫ b

a

ρ

2

[
( f (x))2 − (g(x))2

]
dx

center of mass (ρ constant): x =
My

m
, y =

Mx

m
x =

My

m
, y =

Mx

m

While the integral formulas above are often useful, it is important
that you understand the process used to obtain these formulas in order
to compute moments and centroids of more general regions.

With the knowledge of Riemann sums
you have developed, you should be able
to set up integrals to compute masses
and moments for regions bounded by
curves of the form x = g(y), and deal
with situations where the density of a
thin plate is a function of x or y.

Example 6. Find the centroid of the region R bounded by the graphs
of y = x2 and y = x3.

Solution. The curves intersect where x2 = x3 ⇒ x2 − x3 = 0 ⇒
x2(1 − x) = 0 ⇒ x = 0 or x = 1. A graph (see margin) helps confirm
that x2 ≥ x3 on [0, 1]. If the density of R is ρ then the mass of R is:

m =
∫ 1

0
ρ
[

x2 − x3
]

dx = ρ

[
1
3

x3 − 1
4

x4
]1

0
=

ρ

12

The moment of R about the y-axis is:

My = ρ
∫ 1

0
x
[

x2 − x3
]

dx = ρ
∫ 1

0

[
x3 − x4

]
dx = ρ

[
1
4

x4 − 1
5

x5
]1

0
=

ρ

20
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And the moment of R about the x-axis is:

Mx =
ρ

2

∫ 1

0

[(
x2
)2

−
(

x3
)2
]

dx =
ρ

2

[
1
5

x5 − 1
7

x7
]1

0
=

ρ

35

so x =
My

m
=

ρ
20
ρ

12
=

3
5

and y =
Mx

m
=

ρ
35
ρ

12
=

12
35

. Plotting the point(
3
5 , 12

35

)
≈ (0.60, 0.34) along with R confirms that it sits inside R (just

barely) and appears to be a reasonable candidate for the centroid. ◀

Symmetry

Symmetry is a very powerful geometric concept that can simplify many
mathematical and physical problems, including the task of finding
centroids of regions. For some regions, we can use symmetry alone to
determine the centroid. Geometrically, a region R is symmetric about
a line L if, when R is folded along L, each point of R on one side of
the fold matches up with exactly one point of R on the other side of
the fold (see margin).

Example 7. Sketch two lines of symmetry for each region shown in the
margin figure.

Solution. See solution to Practice 6. ◀

A very useful fact about symmetric regions is that the centroid (x, y)
of a symmetric region must lie on every line of symmetry of the region.
If a region has two different lines of symmetry, then the centroid must

In Example 5, the half-disk was symmet-
ric with respect to the y-axis, so we could
have avoided setting up and evaluating
the My integral by noticing that (x, y)
must be located on the y-axis (the line
x = 0) and concluding that x = 0.

lie on each of them, so the centroid must be located at the point where
the lines of symmetry intersect.

Practice 6. Locate the centroid of each region in Example 7.

Work

In a uniform gravitational field, the center of gravity of an object is
located at the same point as its center of mass, and the work done to
lift an object is the product of the object’s weight and the distance that
the center of gravity of the object is raised:

work = (object’s weight) (distance object’s center of gravity is raised)

In the high jump, this explains the effectiveness of the “Fosbury Flop,”
a technique where the jumper assumes an inverted U position while
going over the bar (see margin): the jumper’s body goes over the bar
while the jumper’s center of gravity goes under it, allowing the jumper
to clear a higher bar with no additional upward thrust.

If you know the center of gravity of an object being lifted, some work
problems become much easier.
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Example 8. The trough shown in the margin is filled with a liquid
weighing 70 pounds per cubic foot. How much work is done pumping
the liquid over the wall next to the trough?

We’ve already solved this problem (as
Example 5 in Section 5.4) but here we try
a new approach using centroids.

Solution. This is a 3-D problem, but symmetry tells us the centroid
of the liquid must be at a point 2.5 feet from either end of the trough,
and 1 foot away from the wall. The vertical coordinate of the centroid
will be the same as the centroid of the trough’s triangular end region.
Using the result of Practice 5, we can conclude that the centroid of the
triangle is at a height of 2

3 · 4 = 8
3 . The weight of the liquid is:

(density) · (volume) =
(

70
lb
ft3

)
· 1

2
(5 ft) · (2 ft) · (4 ft) = 1400 lbs

and the distance the center of gravity must be moved is 6 − 8
3
=

10
3

ft
so the total work required is:

(1400 lbs) ·
(

10
3

ft
)
=

14000
3

ft-lbs ≈ 4666.7 ft-lbs

which agrees with the answer obtained in Section 5.4. ◀

Theorems of Pappus
Pappus, the last of the great Greek ge-
ometers, flourished during the first half
of the fourth century.

Two theorems due to Pappus of Alexandria can make some volume
and surface area calculations relatively easy.

Theorem of Pappus: Volume of Revolution

If a plane region R with area A and centroid (x, y)
is revolved around a line L in the plane
that does not pass through R

then the volume swept out by one revolution of R is the
product of A and the distance traveled by the centroid.

Touching the boundary is OK.

The distance from the centroid to the line will be the radius of the
circle swept out by the centroid, so the distance traveled by the centroid
is 2π times this radius. When L is the x-axis, the volume of the solid is
A · 2πy; when L is the y-axis, the volume of the solid is A · 2πx.

Example 9. Find the volume swept out when the region R bounded by
the graphs of y = x2 and y = x3 is revolved around the line x = 2.

Solution. From Example 6, we know the area of R is 1
12 and its centroid

is
(

3
5 , 12

35

)
. The distance from this point to the line x = 2 is 2 − 3

5 = 7
5 ,

so the distance traveled by the centroid is 2π · 7
5
=

14π

5
. The volume

of the solid of revolution is therefore
1
12

· 14π

5
=

7π

30
. ◀



applications of definite integrals 453

.Theorem of Pappus: Surface Area of Revolution

If a plane region R with perimeter P and centroid (x, y)
is revolved around a line L in the plane
that does not pass through R

then the surface area swept out by one revolution of R is the
product of P and the distance traveled by the centroid.

Touching the boundary is OK.

When L is the x-axis, the surface area of the solid is P · 2πy; when L
is the y-axis, the surface area is P · 2πx.

Example 10. Find the surface area of the solid swept out when the
square region R with vertices at (1, 0), (0, 1), (−1, 0) and (0,−1) is
revolved around the line y = 3.

Solution. By symmetry, the centroid of the square is (0, 0) and its
distance from y = 3 is 3. The perimeter of the square is 4

√
2, so the

surface area of the solid of revolution is 4
√

2 · 2π · 3 = 24π
√

3. ◀

5.6 Problems

1. (a) Find the total mass and the center of mass for
a system consisting of the three point-masses
in the table below left.

(b) Where should you locate a new object with
mass 8 so the new system has its center of
mass at x = 5?

(c) What mass should you put at x = 10 so the
original system plus the new mass has its cen-
ter of mass at x = 6?

mk 2 5 5

xk 4 2 6

mk 5 3 2 6

xk 1 7 5 5

2. (a) Find the total mass and the center of mass for
a system consisting of the four point-masses
in the table above right.

(b) Where should you locate a new object with
mass 10 so the new system has its center of
mass at x = 6?

(c) What mass should you put at x = 14 so the
original system plus the new mass has its cen-
ter of mass at x = 6?

3. (a) Find the total mass and the center of mass for
a system consisting of the three point-masses
in the table below.

(b) Where should you locate a new object with
mass 10 so the new system has its center of
mass at (5, 2)?

mk 2 5 5

xk 4 2 6

yk 3 4 2

4. (a) Find the total mass and the center of mass for
a system consisting of the four point-masses
in the table below.

(b) Where should you locate a new object with
mass 12 so the new system has its center of
mass at (3, 5)?

mk 5 3 2 6

xk 1 7 5 5

yk 4 7 0 8
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In Problems 5–10, divide the plate shown into rect-
angles and semicircles, calculate the mass, moments
and centers of mass of each piece, then find the cen-
ter of mass of the plate. Assume the density of the
plate is ρ = 1. Plot the location of the center of mass
for each shape. (Refer to Example 5 for centroids of
semicircular regions.)

5. Use the figure below left.

6. Use the figure above right.

7. Use the figure below left.

8. Use the figure above right.

9. Use the figure below left.

10. Use the figure above right.

In Problems 11–26, sketch the region bounded by
the the given curves and find the centroid of each
region (use technology to evaluate integrals, if nec-
essary). Plot the location of the centroid on your
sketch of the region.

11. y = x, the x-axis, x = 3

12. y = x2, the x-axis, x = −2, x = 2

13. y = x2, y = 4

14. y = sin(x), the x-axis, the y-axis, x = π

15. y = 4 − x2 and the x-axis for −2 ≤ x ≤ 2

16. y = x2, y = x

17. y = 9 − x, y = 3, x = 0, x = 3

18. y =
√

1 − x2, the x-axis, x = 0, x = 1

19. y =
√

x, the x-axis, x = 9

20. y = ln(x), the x-axis, x = e

21. y = ex, y = e and the y-axis

22. y = x2 and y = 2x

23. An empty box in the shape of a cube measuring
1 foot on each side weighs 10 pounds. By sym-
metry, we know its center of mass is 6 inches
above its bottom. When the box is full of a liquid
with density 60 lb/ft3, the center of mass of the
box-liquid system is again (due to symmetry) 6

inches above the bottom of the box.

(a) Find the height of the center of mass of the
box-liquid system as a function of h, the height
of water in the box.

(b) To what height should you fill the box so that
the box-liquid system has the lowest center of
gravity (and the greatest stability)?

24. The empty glass shown below left has a mass of
100 g when empty. Find the height of the center
of mass of the glass-water system as a function of
the height of water in the glass.

25. The empty soda can shown above right has a
mass of 15 g when empty and 400 g when full of
soda. Find the height of the center of mass of the
can-soda system as a function of the height of the
soda in the can.
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26. Give a practical set of directions someone could
actually use to find the height of the center of
gravity of their body with their arms at their
sides. How will the height of the center of gravity
change if they lift their arms?

27. Try the following experiment. Stand straight with
your back and heels against a wall. Slowly raise
one leg, keeping it straight, in front of you. What
happened? Why?

28. Why can’t two dancers stand in the position
shown below?

29. If a shape has exactly two lines of symmetry, the
lines can meet at right angles. Must they meet at
right angles?

30. Sketch regions with exactly two lines of symme-
try, exactly three lines of symmetry, and exactly
four lines of symmetry.

31. A rectangular box is filled to a depth of 4 feet
with 300 pounds of water. How much work is
done pumping the water to a point 10 feet above
the bottom of the box?

32. A cylinder is filled to a depth of 2 feet with 40

pounds of water. How much work is done pump-
ing the water to a point 7 feet above the bottom
of the cylinder?

33. A sphere of radius 2 m is filled with water. How
much work is done pumping the water to a point
3 m above the top of the sphere?

34. A sphere of radius 2 feet is filled with water. How
much work is done pumping the water to a point
5 feet above the top of the sphere?

35. The center of a square region with sides of length
2 cm is located at the point (3, 4). Find the vol-
ume swept out when the square region is rotated:

(a) about the x-axis.

(b) about the y-axis.

(c) about the line y = 6

(d) about the line x = 6

(e) about the line 2x + 3y = 6

36. The lower left corner of a rectangular region with
an 8-inch base and a 4-inch height is located at
the point (3, 5). Find the volume swept out when
the rectangular region is rotated:

(a) about the x-axis.

(b) about the y-axis.

(c) about the line y = x + 5

37. The center of a square region with sides of length
2 cm is located at the point (3, 4). Find the surface
area swept out when the square region is rotated:

(a) about the x-axis.

(b) about the y-axis.

(c) about the line y = 6

(d) about the line x = 6

(e) about the line 2x + 3y = 6

38. The lower left corner of a rectangular region with
an 8-inch base and a 4-inch height is located at
the point (3, 5). Find the surface area swept out
when the rectangular region is rotated:

(a) about the x-axis.

(b) about the y-axis.

(c) about the line y = x + 5

39. Find the volume and surface area swept out when
the region inside the circle (x− 3)2 +(y− 5)2 = 4
is rotated:

(a) about the x-axis.

(b) about the y-axis.

(c) about the line y = 9

(d) about the line x = 6

(e) about the line 2x + 3y = 6
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40. Find the volume and surface area swept out when
the center of a circle with radius r and center
(R, 0) is rotated about the y-axis (see below).

41. Find the volumes and surface areas swept out
when the rectangles shown below are rotated
about the line L. (Measurements are in feet.)

Physically Approximating Centroids of Regions

You can approximate the location of a centroid of a region experimen-
tally, even if the region — such as a state or country — is not described
by a formula.

Cut the shape out of a piece of some uniformly thick material, such
as paper or cardboard, and pin an edge to a wall. The shape will pivot
about the pin until its center of mass is directly below the pin (see
margin) so the center of mass of the shape must lie directly below the
pin, on the line connecting the pin with the center of mass of Earth.
Repeat the process using a different point near the edge of the shape to
find a different line. The center of mass also lies on the new line, so you
can conclude that the centroid of the shape is located where the two
lines intersect (see margin). It is a good idea to pick a third point near
the edge and plot a third line to check that this third line also passes
through the point of intersection of the first two lines.

You can experimentally approximate the “population center” of a
region by attaching masses proportional to the populations of the cities
and then repeating the “pin” process with this weighted model. The
point on the new model where the lines intersect is the approximate
“population center” of the region.

42. Determine the centroid of your state.

43. Which state would result in the easiest centroid problem? The most
difficult centroid problem?
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5.6 Practice Answers

1. m = 1+ 5+ 3 = 9; M0 = (1)(6)+ (5)(−2)+ (3)(4) = 8; x =
M0

m
=

8
9

;

the three point-masses will balance on a fulcrum located at x = 8
9 .

2. m = 2 + 3 + 1 + 5 + 3 = 14
My = (2)(−3) + (3)(4) + (1)(6) + (5)(−2) + (3)(4) = 14
Mx = (2)(4) + (3)(−7) + (1)(−2) + (5)(1) + (3)(−6) = −28

x =
My

m
=

14
14

= 1 and y =
Mx

m
=

−28
14

= −2

The five point-masses balance at the point (1,−2).

3. There are several ways to break the region into “easy” pieces — one
way is to consider the four 2 cm-by-2 cm squares. The center of mass
of each square is located at the center of the square (at (2, 2), (4, 2),
(6, 2) and (4, 4)), and each square has mass

(
4 cm2) (5 g

cm2

)
= 20 g

so: m = 4 (20 g) = 80 g, My = 2(20) + 4(20) + 6(20) + 4(20) =

320 g-cm and Mx = 2(20) + 2(20) + 2(20) + 4(20) = 200 g-cm.

Therefore x =
My

m
=

320 g-cm
80 g

= 4 cm and y =
Mx

m
=

200 g-cm
80 g

=

2.5 cm so the center of mass is located at (4, 2.5).

4. For simplicity, let ρ = 1. Then the mass is m =
∫ 2

0
x2 dx =

8
3

while

My =
∫ 2

0
x · x2 dx =

∫ 2

0
x3 dx = 4 so x =

4
8
3
=

3
2
= 1.5.

5. The triangular region appears in the margin. Here f (x) = h − h
b

x for

0 ≤ x ≤ b and g(x) = 0. The “mass” is just the area of the triangle,
so m = 1

2 · b · h while:

My =
∫ b

0
x
[

h − h
b

x
]

dx =
∫ b

0

[
hx − h

b
x2
]

dx =

[
h
2

x2 − h
3b

x3
]b

0
=

b2h
6

and:

Mx =
∫ b

0

1
2

[
h − h

b
x
]2

dx =

[
1
6

(
− b

h

)(
h − h

b
x
)3
]b

0

= 0+
b

6h
· h3 =

bh2

6

So (x, y) =

(
b2h
6
bh
2

,
bh2

6
bh
2

)
=

(
b
3

,
h
3

)
.

6. The centroid of each region is located at the point where the lines of
symmetry intersect (see margin figure).
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