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5.3 Arclength and Surface Area

This section introduces two additional geometric applications of inte-
gration: finding the length of a curve and finding the area of a surface
generated when you revolve a curve about a line. The general strategy
remains the same: partition the problem into small pieces, approximate
the solution on each small piece, add the small solutions together to
form a Riemann sum and, finally, take the limit of the Riemann sum to
get a definite integral.

Arclength: How Long Is a Curve?

In order to better understand an animal, biologists need to know how it
moves through its environment and how far it travels. We need to know
the length of the path it moves along. If we know the object’s location
at successive times, then we can easily calculate the distances between
those locations and add them together to get a total (approximate)
distance.

Example 1. In order to study the movement of whales, marine biologists
implant a small transmitter on selected whales and track the location
of a whale via satellite. Position data at one-hour time intervals over a
five-hour period appears in the margin figure. How far did the whale
swim during the first three hours?

Solution. In moving from the point (0, 0) to the point (0, 2), the
whale traveled at least 2 miles. Similarly, the whale traveled at least√

(1 − 0)2 + (3 − 2)2 =
√

2 ≈ 1.4 miles during the second hour and

at least
√
(4 − 1)2 + (1 − 3)2 =

√
13 ≈ 3.6 miles during the third hour.

The scientist concluded that the whale swam at least 2 + 1.4 + 3.6 = 7
miles during the three-hour period. ◀

Practice 1. How far did the whale swim during the entire five-hour
time period?

It is unlikely that the whale swam in a straight line from location
to location, so its actual swimming distance was undoubtedly more
than seven miles during the first three hours. Scientists might get
better distance estimates by recording the whale’s position over shorter,
five-minute time intervals.

Our strategy for finding the length of a curve will resemble the one
the scientist used, and if the locations are given by a formula, then we
can calculate the successive locations over very short intervals and get
very good approximations of the total path length.

Example 2. Use the points (0, 0), (1, 1) and (3, 9) to approximate the
length of y = x2 for 0 ≤ x ≤ 3.
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Solution. The lengths of the two line segments (see margin) are:√
(1 − 0)2 + (1 − 0)2 =

√
1 + 1 =

√
2 ≈ 1.41

and: √
(3 − 1)2 + (9 − 1)2 =

√
4 + 64 =

√
68 ≈ 8.25

so the length of the curve is approximately 1.41 + 8.25 = 9.66. ◀

Practice 2. Get a better approximation of the length of y = x2 for
0 ≤ x ≤ 3 by using the points (0, 0), (1, 1), (2, 4) and (3, 9). Is your
approximation longer or shorter than the actual length?

For a curve C (see margin), pick some points (xk, yk) along C and
connect those points with line segments. Then the sum of the lengths
of the line segments will approximate the length of C. We can think
of this as pinning a string to the curve at the selected points, and then
measuring the length of the string as an approximation of the length of
the curve. Of course, if we only pick a few points (as in the margin),
then the total length approximation will probably be rather poor, so
eventually we want lots of points (xk, yk) close together all along C.

Label these points so that (x0, y0) is one endpoint of C and (xn, yn)

is the other endpoint, and so that the subscripts increase as we move
along C. Then the distance between the successive points (xk−1, yk−1)

and (xk, yk) is:√
(xk − xk−1)2 + (yk − yk−1)2 =

√
(∆xk)2 + (∆yk)2

and the total length of these line segments is simply the sum of the
successive lengths:

n

∑
k=1

√
(∆xk)2 + (∆yk)2

This summation does not have the form ∑ g(ck) · ∆xk so it is not a
Riemann sum. It is, however, algebraically equivalent to an expression
very much like a Riemann sum that will lead us to a definite integral
representation for the length of C.

If C is given by y = f (x) for a ≤ x ≤ b, so that y is a function of x,
we can factor (∆xk)

2 from inside the radical and simplify:

length of C ≈
n

∑
k=1

√
(∆xk)2 + (∆yk)2 =

n

∑
k=1

√√√√(∆xk)2

[
1 +

(∆yk)
2

(∆xk)2

]

=
n

∑
k=1

(∆xk)

√
1 +

(
∆yk
∆xk

)2
=

n

∑
k=1

√
1 +

(
∆yk
∆xk

)2
· ∆xk

to get an expression that looks more like a Riemann sum. The
∆yk
∆xk

inside the radical should remind you of two things: the slope of a
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line segment (it is, in fact, the slope of the k-th line segment in our

approximation of the curve C) and a derivative,
dy
dx

. If f (x) is both
continuous and differentiable, then the Mean Value Theorem guarantees
that there is some number ck between xk−1 and xk so that:

Review Section 3.2 if you need to refresh
your memory about the hypotheses and
conclusions of the Mean Value Theorem.

f ′(ck) =
f (xk)− f (xk−1)

xk − xk−1
=

∆yk
∆xk

in which case we can write:

n

∑
k=1

√
1 +

(
∆yk
∆xk

)2
· ∆xk =

n

∑
k=1

√
1 + [ f ′(ck)]

2 · ∆xk

This last expression is a Riemann sum, so it converges to a definite
integral:

n

∑
k=1

√
1 + [ f ′(ck)]

2 · ∆xk −→
∫ b

a

√
1 + [ f ′(x)]2 dx

This definite integral provides us with a formula for the length of a
curve C given by y = f (x) for a ≤ x ≤ b.

In order to be sure that the sum con-
verges to the integral, we need the result-
ing integrand to be an integrable function.
If we require f ′(x) to be continuous on
[a, b] then the integrand will be a com-
position of continuous functions, hence
continuous, and we know that a function
that is continuous on a closed interval is
integrable.Arclength Formula: y = f (x) version

If C is a curve given by y = f (x) for a ≤ x ≤ b
and f ′(x) exists and is continuous on [a, b]
then the length L of C is given by:

L =
∫ b

a

√
1 + [ f ′(x)]2 dx

Example 3. Compute the length of y = x2 for 0 ≤ x ≤ 3.

Solution. Here f (x) = x2 ⇒ f ′(x) = 2x so the length of this curve is:∫ 3

0

√
1 + [2x]2 dx =

∫ 3

0

√
1 + 4x2 dx

Unfortunately we do not (yet) have a technique to find an antiderivative
of this integrand, but we can use numerical methods (such as Simpson’s
Rule, or a calculator or computer) to determine that the value of the
integral is approximately 9.7471 (compare this with the answers from
Example 2 and Practice 2). ◀

You will eventually be able to find an
exact value for this definite integral using
techniques developed in Section 8.4.

Practice 3. Compute the length of y = x2 between (1, 1) and (4, 16).

Practice 4. Represent the length of one period of y = sin(x) as a
definite integral, then find the length of this curve (using technology to
approximate the value of the definite integral, if necessary).
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More Arclength Formulas

Not all interesting curves are graphs of functions of the form y = f (x).
For a curve given by x = g(y) we can mimic the previous argument (or
simply swap x and y) to arrive at another arclength formula:

Arclength Formula: x = g(y) version

If C is a curve given by x = g(y) for c ≤ y ≤ d
and g′(y) exists and is continuous on [c, d]
then the length L of C is given by:

L =
∫ d

c

√
1 + [g′(y)]2 dy

Practice 5. Compute the length of x =
√

y between (1, 1) and (4, 16).

Review Section 2.5 to refresh your mem-
ory about parametric equations.

A curve C can also be described using parametric equations, where
functions x(t) and y(t) give the coordinates of a point on the curve
specified by a parameter t. We often think of t as “time,” so that
(x(t), y(t)) represents the position of a particle in the xy-plane t seconds
(or minutes or hours) after time t = 0. In Section 2.5, we discovered
that the speed of such a particle at time t is given by:√(

dx
dt

)2
+

(
dy
dt

)2

To find the distance the particle travels between times t = α and t = β,
we could then integrate this speed function, which would also tell us
the length of the curve.

The distance traveled by the particle and
the length of the curve will be equal as
long as the particle does not traverse any
part of the curve more than once on the
interval α ≤ t < β.

Arclength Formula (Parametric Version)

If C is a curve given by x = x(t) and y = y(t) for α ≤ t ≤ β

and x′(t) and y′(t) exist and are continuous on [α, β]

then the length L of C is given by:

L =
∫ β

α

√(
dx
dt

)2
+

(
dy
dt

)2
dt

Practice 6. Compute the length of the parametric curve given by the
functions x(t) = cos(t) and y(t) = sin(t) for 0 ≤ t ≤ 2π.

Practice 7. Compute the length of the parametric path given by the
functions x(t) = 1 + 3t and y(t) = 4t for 1 ≤ t ≤ 3.

Areas of Surfaces of Revolution

In the previous section, we revolved a region in the xy-plane about a
horizontal or vertical axis to create a solid, then used an integral to
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compute the volume of that solid. If we instead rotate a curve about
an axis, we get a surface, whose surface area we can also compute
using an integral. Just as the integral formulas for arclength came from
the simple distance formula, the integral formulas for the area of a
surface of revolution come from the formula for revolving a single line
segment.

If we rotate a line segment of length L parallel to a line P (see
margin) about the line P, then the resulting surface (a cylinder) can be
“unrolled” and laid flat. This flattened surface is a rectangle with area
A = 2π · r · L.

If we rotate a line segment of length L perpendicular to a line P and
not intersecting P (see second margin figure) about the line P, then
the resulting surface is the region between two concentric circles (an
“annulus”) and its area is:

A = (area of large circle)− (area of small circle)

= π (r2)
2 − π (r1)

2 = π
[
(r2)

2 − (r1)
2
]
= π (r2 + r1) (r2 − r1)

= 2π

(
r2 + r1

2

)
L

The expression r2+r1
2 represents the distance of the midpoint of the line

segment L from the axis of rotation P and 2π
(

r2+r1
2

)
is the distance this

midpoint travels when we revolve the line segment about the axis. It
turns out that this pattern holds when we revolve any line segment of
length L that does not intersect a line P about the line P (see margin):

A = (distance traveled by segment midpoint) · (length of line segment)

= 2π (distance of segment midpoint from line P) · L See Problem 52 for a proof.

Example 4. Compute the area of the surface generated when each line
segment in the margin figure is rotated about the x-axis and the y-axis.

Solution. Line segment B has length L = 2 and its midpoint is at (2, 1),
which is 1 unit from the x-axis and 2 units from the y-axis. When B is
rotated about the x-axis, the surface area is therefore:

2π · (distance of midpoint from x-axis) · 2 = 2π(1)2 = 4π

and when B is rotated about the y-axis, the surface area is:

2π · (distance of midpoint from y-axis) · 2 = 2π(2)2 = 8π

Line segment C has length 5 and its midpoint is at (7, 4). When C is
rotated about the x-axis, the resulting surface area is:

2π · (distance of midpoint from x-axis) · 5 = 2π(4)5 = 40π

When C is rotated about the y-axis, the distance of the midpoint from
the axis is 7, so the surface area is 2π(7)5 = 70π. ◀
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Practice 8. Find the area of the surface generated when the graph in
the margin is rotated about each coordinate axis.

When we rotate a curve C (that does not intersect a line P, as in
the second margin figure) about the line P, we also get a surface. To
approximate the area of that surface, we can use the same strategy we
used to approximate the length of a curve: select some points (xk, yk)

along the curve, connect the points with line segments, calculate the
surface area of each rotated line segment, and add together the surface
areas of the rotated line segments.

The rotated line segment with endpoints (xk−1, yk−1) and (xk, yk)

has midpoint:

(xk, yk) =

(
xk−1 + xk

2
,

yk−1 + yk
2

)
and length:

L =

√
(xk − xk−1)

2 + (yk − yk−1)
2 =

√
(∆xk)

2 + (∆yk)
2

If we rotate C about the x-axis, the distance from the midpoint of
the k-th line segment to the x-axis is yk so the surface area of the k-th
rotated line segment will be:

2π (yk) L = 2π

(
yk−1 + yk

2

)√
(∆xk)

2 + (∆yk)
2

= 2π

(
yk−1 + yk

2

)√
1 +

[
∆yk
∆xk

]2
∆xk

If C is given by y = f (x) for a ≤ x ≤ b, and f ′(x) is continuous on
[a, b], we can appeal to the Mean Value Theorem to find a ck with
xk−1 < ck < xk and f ′(ck) =

∆yk
∆xk

so that our last expression becomes:

2π

(
f (xk−1) + f (xk)

2

)√
1 + [ f ′ (ck)]

2 ∆xk

Adding up these approximations, we get:

n

∑
k=1

2π

(
f (xk−1) + f (xk)

2

)√
1 + [ f ′ (ck)]

2 ∆xk

which converges to a definite integral:∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx

that gives us a formula for the surface area of the revolved curve.

This is not actually a Riemann sum, be-
cause the values xk−1, xk and ck are not
all the same. Proving that this sum con-
verges to a definite integral requires some
more advanced techniques.

Example 5. Compute the area of the surface generated when the curve
y = 2 + x2 for 0 ≤ x ≤ 3 is rotated about the x-axis.
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Solution. Here f (x) = 2 + x2 ⇒ f ′(x) = 2x so, using the integral
formula we just obtained:∫ b

a
2π f (x)

√
1 + [ f ′(x)]2 dx =

∫ 3

0
2π
(

2 + x2
)√

1 + 4x2 dx

We do not (yet) know how to find an antiderivative for this integrand,
but numerical approximation yields a result of 383.8. ◀

You will eventually be able to find an
exact value for this definite integral using
techniques developed in Section 8.4.

More Sufrace Area Formulas

If a curve C given by y = f (x) for a ≤ x ≤ b is instead rotated about
the y-axis, then the distance from the midpoint of the k-th line segment
to the axis of rotation is xk. Replacing yk with xk in our work on the
previous page yields the formula:∫ b

a
2πx

√
1 + [ f ′(x)]2 dx

for the area of the surface generated by revolving C about the y-axis
(assuming, as before, that f ′(x) is continuous for a ≤ x ≤ b).

Example 6. Compute the area of the surface generated when the curve
y = 2 + x2 for 0 ≤ x ≤ 3 is rotated about the y-axis.

Solution. Here again f (x) = 2 + x2 ⇒ f ′(x) = 2x so, using our
newest integral formula:∫ b

a
2πx

√
1 + [ f ′(x)]2 dx =

∫ 3

0
2πx

√
1 + 4x2 dx

We can find an antiderivative of this integrand using substitution:

u = 1 + 4x2 ⇒ du = 8x dx ⇒ 1
8

du = x dx

The integral limits become u = 1 + 4(0)2 = 1 and u = 1 + 4(3)2 = 37,
so the surface area is:∫ u=37

u=1
2π · 1

8
√

u du =
π

4

∫ 37

1
u

1
2 du =

π

4
· 2

3

[
u

3
2

]37

1
=

π

6

[
37
√

37 − 1
]

or approximately 117.3. ◀

Wrap-Up

See Problems 48–51.

Developing formulas for the area of a surface generated by rotating a
curve x = g(y) for c ≤ y ≤ d (or by parametric equations) present little
additional difficulty. In future chapters, however, we will develop much
more general—yet simpler—formulas for arclength and surface area.
While the integral formulas developed in this section can be useful,
more importantly their development served to illustrate yet again how
relatively simple approximation formulas can lead us—via Riemann
sums—to integral formulas. We will see this process again and again.
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5.3 Problems

1. The locations (in feet, relative to an oak tree) at
various times (in minutes) for a squirrel spotted
in a back yard appear in the table below:

time north east

0 10 7

5 25 27

10 1 45

15 13 33

20 24 40

25 10 23

30 0 14

At least how far did the squirrel travel during the
first 15 minutes?

2. The squirrel in the previous problem traveled at
least how far during the first 30 minutes?

3. Use the partition {0, 1, 2} to estimate the length
of y = 2x between the points (0, 1) and (2, 4).

4. Use the partition {1, 2, 3, 4} to estimate the length

of y =
1
x

between the points (1, 1) and
(

4,
1
4

)
.

The graphs of the functions in Problems 5–8 are line
segments. Calculate each length (a) using the dis-
tance formula between two points and (b) by setting
up and evaluating an appropriate arclength integral.

5. y = 1 + 2x for 0 ≤ x ≤ 2.

6. y = 5 − x for 1 ≤ x ≤ 4,

7. x = 2 + t, y = 1 − 2t for 0 ≤ t ≤ 3.

8. x = −1 − 4t, y = 2 + t for 1 ≤ t ≤ 4.

9. Calculate the length of y =
2
3

x
3
2 for 0 ≤ x ≤ 4.

10. Calculate the length of y = 4x
3
2 for 1 ≤ x ≤ 9.

Very few functions of the form y = f (x) lead to inte-

grands of the form
√

1 + [ f ′(x)]2 that have elemen-

tary antiderivatives. In 11—14, 1 +
[

f ′(x)
]2 ends

up being a perfect square, so you can evaluate the
resulting arclength integral using antiderivatives.

11. y =
x3

3
+

1
4x

for 1 ≤ x ≤ 5.

12. y =
x4

4
+

1
8x2 for 1 ≤ x ≤ 9.

13. y =
x5

5
+

1
12x3 for 1 ≤ x ≤ 5.

14. y =
x6

6
+

1
16x4 for 4 ≤ x ≤ 25.

In Problems 15–23, represent each length as a defi-
nite integral, then evaluate the integral (using tech-
nology, if necessary).

15. The length of y = x2 from (0, 0) to (1, 1).

16. The length of y = x3 from (0, 0) to (1, 1).

17. The length of y =
√

x from (1, 1) to (9, 3).

18. The length of y = ln(x) from (1, 0) to (e, 1).

19. The length of y = sin(x) from (0, 0) to

(
π

4
,

√
2

2

)

and from

(
π

4
,

√
2

2

)
to
(π

2
, 1
)

.

20. The length of the ellipse x(t) = 3 cos(t), y(t) =
4 sin(t) for 0 ≤ t ≤ 2π.

21. The length of the ellipse x(t) = 5 cos(t), y(t) =
2 sin(t) for 0 ≤ t ≤ 2π.

22. A robot programmed to be at location x(t) =

t cos(t), y(t) = t sin(t) at time t will travel how
far between t = 0 and t = 2π?

23. How far will the robot in the previous problem
travel between t = 10 and t = 20?

24. As a tire of radius R rolls, a pebble stuck in
the tread will travel a “cycloid” path, given by
x(t) = R · (t − sin(t)), y(t) = R · (1 − cos(t)). As
t increases from 0 to 2π, the tire makes one com-
plete revolution and travels forward 2πR units.
How far does the pebble travel?

25. Referring to the previous problem, as a tire with
a 1-foot radius rolls forward 1 mile, how far does
a pebble stuck in the tire tread travel?

26. Graph y = xn for n = 1, 3, 10 and 20. As the
value of n becomes large, what happens to the
graph of y = xn? Estimate the value of:

lim
n→∞

∫ x=1

x=0

√
1 + [n · xn−1]

2 dx
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27. Find the point on the curve f (x) = x2 for
0 ≤ x ≤ 4 that will divide the curve into two
equally long pieces. Find the points that will
divide the segment into three equally long pieces.

28. Find the pattern for the functions in Problems

11–14. If y =
xn

n
+

1
Axp , how must A and p be

related to n?

29. Use the formulas for A and p from the previous
problem with n = 3

2 and find a new function

y =
2
3

x
3
2 +

1
Axp so that 1 +

[
dy
dx

]2
is a perfect

square.

30. Find the surface area when each line segment in
the figure below is rotated about the (a) x-axis
and (b) y-axis.

31. Find the surface area when each line segment in
the figure above is rotated about the line (a) y = 1
and (b) x = −2.

32. Find the surface area when each line segment in
the figure below is rotated about the line (a) y = 1
and (b) x = −2.

33. Find the surface area when each line segment in
the figure above is rotated about the (a) x-axis
and (b) y-axis.

34. A line segment of length 2 with midpoint (2, 5)
makes an angle of θ with the horizontal. What
value of θ will result in the largest surface area
when the line segment is rotated about the y-axis?
Explain your reasoning.

35. A line segment of length 2 with one end at (2, 5)
makes an angle of θ with the horizontal. What
value of θ will result in the largest surface area
when the line segment is rotated about the x-axis?
Explain your reasoning.

In Problems 36–43, when the given curve is rotated
about the given axis, represent the area of the result-
ing surface as a definite integral, then evaluate that
integral using technology.

36. y = x3 for 0 ≤ x ≤ 2 about the y-axis

37. y = 2x3 for 0 ≤ x ≤ 1 about the y-axis

38. y = x2 for 0 ≤ x ≤ 2 about the x-axis

39. y = 2x2 for 0 ≤ x ≤ 1 about the x-axis

40. y = sin(x) for 0 ≤ x ≤ π about the x-axis

41. y = x3 for 0 ≤ x ≤ 2 about the x-axis

42. y = sin(x) for 0 ≤ x ≤ π

2
about the y-axis

43. y = x2 for 0 ≤ x ≤ 2 about the y-axis

44. Find the area of the surface formed when the
graph of y =

√
4 − x2 is rotated about the x-axis:

(a) for 0 ≤ x ≤ 1.

(b) for 1 ≤ x ≤ 2.

(c) for 2 ≤ x ≤ 3.

45. Show that if a thin hollow sphere is sliced into
pieces by equally spaced parallel cuts (see below),
then each piece has the same weight. (Hint: Does
each piece have the same surface area?)
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46. Interpret the result of the previous problem for
an orange sliced by equally spaced parallel cuts.

47. A hemispherical cake with a uniformly thick layer
of frosting is sliced with equally spaced parallel
cuts. Does everyone get the same amount of cake?
The same amount of frosting?

48. Devise a formula for the area of the surface
generated by revolving the curve x = g(y) for
c ≤ y ≤ d about the (a) x-axis and (b) y-axis.

49. Use the answer to the previous problem to find
the area of the surface generated by revolving
x = ey for 0 ≤ y ≤ 1 about (a) the x-axis and
(b) the y-axis.

50. Devise a formula for the area of the surface gener-
ated by revolving the curve given by parametric
equations x = x(t) and y = y(t) for α ≤ t ≤ β

about the (a) x-axis and (b) y-axis.

51. Use the answer to the previous problem to find
the area of the surface generated by revolving
the curve given by x = cos(t) and y = sin(t) for

0 ≤ t ≤ π

2
about (a) the x-axis and (b) the y-axis.

52. The surface generated by revolving a line seg-
ment of length L about a line P (that does not
intersect the line segment) is the frustrum of a
cone: the surface that results from taking a larger
cone of radius r2 and removing a smaller cone
of radius r1 (“chopping off the top”). We know
from geometry that the surface area of a cone is

πrs where r is the radius of the cone and s is the
slant height:

(a) If s1 is the slant height of the smaller cone that
is removed from the bigger cone, show that:

s1 + L =
r2L

r2 − r1

(Hint: Use similar triangles.)

(b) Show that the surface area of the frustrum is:

πr2 (s1 + L)− πr1s1

(c) Show that this quantity equals:

π (r1 + r2) L

(d) Show that this last quantity is the product of
the distance traveled by the midpoint and the
length of the line segment.

3-D Arclength

If a 3-dimensional curve C (see margin) is given parametrically by
x = x(t), y = y(t) and z = z(t) for α ≤ t ≤ β, then we can easily
extend the arclength formula to three dimensions:

L =
∫ β

α

√(
dx
dt

)2
+

(
dy
dt

)2
+

(
dz
dt

)2
dt

The remaining problems in this section use this formula to provide you
with a preview of calculus in higher dimensions.
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53. Find the length of the helix (see figure) given by x = cos(t), y = sin(t), z = t for 0 ≤ t ≤ 4π.

54. Find the length of the line segment given by x = t, y = t, z = t for 0 ≤ t ≤ 1.

55. Find the length of the curve given by x = t, y = t2, z = t3 for 0 ≤ t ≤ 1.

56. Find the length of the “stretched helix” given by x = cos(t), y = sin(t),
z = t2 for 0 ≤ t ≤ 2π.

57. Find the length of the curve given by x = 3 cos(t), y = 2 sin(t),
z = sin(7t) for 0 ≤ t ≤ 2π.

5.3 Practice Answers

1. At least 2 +
√

2 +
√

13 + 1 +
√

2 ≈ 9.43 miles.

2. L ≈
√

2 +
√

10 +
√

26 < actual length

3.
∫ 4

1

√
1 + [2x]2 dx =

∫ 4

1

√
1 + 4x2 dx ≈ 15.34

4.
∫ 2π

0

√
1 + [cos(x)]2 dx ≈ 7.64

5. Here g(y) =
√

y = y
1
2 ⇒ g′(y) =

1
2

y−
1
2 =

1
2
√

y
so the arclength is:

∫ 16

1

√
1 +

[
1

2
√

y

]2
dy =

∫ 16

1

√
1 +

1
4y

dy ≈ 15.34 This answer is the same as the answer to
Practice 3. Should that surprise you?

6. Here x′(t) = − sin(t) and y′(t) = cos(t) so the arclength is:∫ 2π

0

√
[− sin(t)]2 + [cos(t)]2 dt =

∫ 2π

0

√
1 dt = 2π

The curve in question is a circle of ra-
dius 1. Does the answer from the integral
formula agree with the answer you can
obtain using simple geometry?

7. Here x′(t) = 3 and y′(t) = 4 so the arclength is:∫ 3

1

√
[3]2 + [4]2 dt =

∫ 3

1
5 dt = 10

The “curve” is a line segment from (4, 4)
to (10, 12). Does the answer from the
integral formula agree with the answer
you can obtain using simple geometry?

8. The surface area of the horizontal segment revolved about x-axis
is 2π(1)(2) = 4π ≈ 12.57 while the surface area of other segment
revolved about the x-axis is 2π(2)(

√
8) ≈ 35.54, so the total surface

area is approximately 12.57 + 35.54 = 48.11 square units.

The surface area of the horizontal segment revolved about y-axis is
2π(3)(2) = 12π ≈ 37.70 while the surface area of the other segment
revolved about the y-axis is 2π(5)(

√
8) ≈ 88.86, so the total surface

area is approximately 37.70 + 88.86 = 126.56 square units.
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